Calciphylaxis

From basic mechanisms to clinical management

Dr. Rachel M. Holden

Cutaneous Molt Induced by Calciphylaxis in the Rat Author(s): Hans Selye, G. Gentile and P. Prioreschi Source: *Science*, New Series, Vol. 134, No. 3493 (Dec. 8, 1961), pp. 1876-1877

Calciphylaxis is a condition of induced systemic hypersensitivity in which, during a "critical period" after sensitization by a systemic calcifying factor (for example, vitamin-D compounds, parathyroid hormone, sodium sulfathiazole), treatment with certain challengers (for example, metallic salts, albumen) causes an acute local calcification, followed by inflammation and sclerosis. The term was coined in

Calciphylaxis - definition

 Rare, life-threatening disorder characterized by:

Occlusion of micro vessels in the subcutaneous adipose tissue and dermis leading to intensely painful, ischemic skin lesions

Induration with dusky discoloration

Sub-cutaneous nodule

Multiple plaques

erythema

Necrotic ulcer with eschar N ENGLJ MED 378;18 NEJM.ORG MAY 3, 2018

How do we describe calciphylaxis?

- Uremic versus non-uremic
- Central versus Peripheral
 - **Central**: central areas within subcutaneous tissue such as abdomen, thighs or breasts
 - **Peripheral**: peripheral sites with limited adipose tissue such as shins or digits
- Ulcerated lesions versus non-ulcerated lesions

Two cases

• Patient A - 2004

• Patient B -2016

Central calciphylaxis

Peripheral calciphylaxis

Patient A – central calciphylaxis

- 42 year old female
- Over weight
- ESKD secondary to FSGS
- Type 2 DM on regular insulin injections
- Peritoneal dialysis x 3 yrs
- Presented April, 2004

Patient A: CKD-MBD parameters

Date/Time	Ca	Mg	Phos
I0Feb99 0530	2.16		1.27
)4Apr01 1125	1.88	0.69	1.93
)6Apr01 1352	1.94	0.77	2.06!
I4Jun01 1300	<u>1.62</u> !		<u>2.05</u> !
?3Aug01 1325			<u>2.18</u> !
)4Oct01 1317			1.54
29Nov01 1107			1.93
31Jan02 1110			1.94
?3May02 1135		0.75	<u>2.52</u> !
)1Aug02 1230			1.80
)5Dec02 1115			1.99
)6Mar03 1043			2.45!
?9May03 1105			2.08!
?1Aug03 1100	2.18		<u>2.52</u> !
)7Apr04 1830	2.52	0.84	<u>2.57</u> !

calciphylaxis diagnosed

Takes calcium binders – 1000 elemental calcium TID

Patient A: CKD-MBD parameters

Date/Time	PTH
04Apr01 1125	<u>53.5</u>
06Apr01 1352	47.0
04Oct01 1317	34.6
23May02 1135	38.6
01Aug02 1230	30.2
06Mar03 1043	39.6
30Dec03 0930	30.5
08Apr04 0605	<u>16.9</u> ←
20May04 1324	4.9

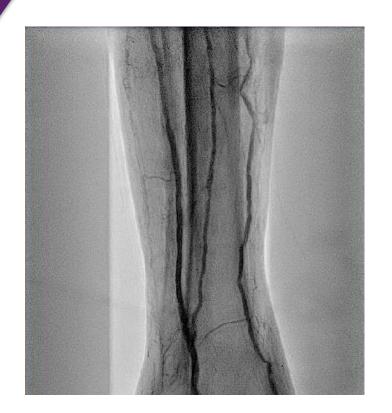
calciphylaxis diagnosed

Patient A

UBCUTANEOUS TISSUE, ABDOMINAL WALL, DEBRIDEMENT PROCEDURE

: FAT NECROSIS, ACUTE INFLAMMATION (? ABSCESS) WITH DYSTROPHIC CALCIFICATION

Patient B – peripheral calciphylaxis


- 55 year old male
- Low BMI
- ESKD secondary to hypertension
- Kidney transplant 1991
- Baseline creatinine ~ 180 umol/L
- Presented May, 2016

Patient B CKD-MBD parameters

				_	
Date/Time	Ca	Mg	Phos		
25May15 0925	2.10	0.66	1.02	Warfarin started	for AF
17Aug15 0945	1.99	0.51	1.09		
12Oct15 0525	2.02	0.51	1.65		
120ct15 1740	1.95	0.95	1.82		
09Nov15 1040	2.04	0.56	1.03	D. J. Tim.	DTU
16Dec15 0235	1.59!	0.73	0.97	Date/Time	PTH
16Dec15 0756	1.71	0.71	1.05	25May15 0925	<u>35.6</u>
16Dec15 1505	1.81	0.71	1.01	17Aug15 0945	76.2
17Dec15 0935	1.91	0.58	0.85	09Nov15 1040	46.0
20Dec15 0700	2.02	0.49!	0.72	18Jan16 1050	102.4
20Dec15 1845	1.97	1.29	0.77	31Mar16 0950	87.7
21Dec15 0753	2.04	0.80	0.82		
22Dec15 0702	1.92	0.77	0.71	11Apr16 1125	101.0
18Jan16 1050	2.07	0.71	0.73	09May16 1230	<u>26.3</u>
31Mar16 0950		0.67	0.88		
11Apr16 1125	2.06	0.80	0.80		
13Apr16 1210	2.03	0.73	0.65		↓
14Apr16 1135	2.02	0.69	0.98		
15Apr16 0040	1.95	0.61	0.85	and sin bulgaris diagraps and	Calcitriol started
09May16 1230	2.05	0.77	0.87	calciphylaxis diagnosed	*****
	-		-		

FINAL DIAGNOSIS

SKIN, PUNCH BIOPSY, ANTERIOR RIGHT SHIN:

: PERIVASCULAR CALCIUM STIPPLING CONSISTENT WITH CALCIPHYLAXIS (SEE COMMENT).

DIAGNOSIS COMMENT

The HandE stained sections show edema with sparse superficial interstitial neutrophilic, lymphocytic and eosinophilic inflammatory infiltrate. Von Kossa special stain shows small deep vessels with calcium stippling of the vessel walls. Taken together with the clinical history, this finding is consistent with calciphylaxis.

Calciphylaxis - Epidemiology

- 35/10,000 patients undergoing HD in the US
- 4/10,000 in Germany
- <1/10,000 in Japan</p>
- Interval between dialysis onset and disease ranges from 30 months in the US and Germany to 105 months in Japan
- Higher incidence in peritoneal dialysis patients
- Unknown incidence in KT recipients

Calciphylaxis – who is at risk?

A Nationally Representative Study of Calcific Uremic Arteriolopathy Risk Factors

Sagar U. Nigwekar,* Sophia Zhao,* Julia Wenger,[†] Jeffrey L. Hymes,[‡] Franklin W. Maddux,[‡] Ravi I. Thadhani,* and Kevin E. Chan*[‡]

Who is at risk? Demographics

Characteristic	Cases (n=1030)	Controls (n=2060)	P Value	
Comorbidities and vital signs				
Diabetes mellitus, %	61	44	< 0.001	
Obesity, %	65	42	< 0.001	
Weight, kg	101.2±29.3	82.0±25.5	< 0.001	
BMI, kg/m ²	36.7 ± 10.2	30.3±8.5	< 0.001	
Systolic BP, mmHg	150±31	148±27	0.04	
Diastolic BP, mmHg	78±18	78±17	0.66	

BCKD₁₈
BC KIDNEY DAYS

J Am Soc Nephrol 27: 3421-3429, 2016.

Who is at risk? CKD-MBD parameters + treatments

Characteristic	Cases (n=1030)	Controls (n=2060)	P Value
Mineral bone parameters and therapies			
Serum calcium (albumin corrected), mg/dl	9.1±0.8	9.0±0.8	0.04
Serum phosphorus, mg/dl	4.9 ± 2.3	4.6±2.0	0.001
Serum PTH, pg/ml	379 (184, 651)	250 (100, 471)	< 0.001
Serum ALP, U/L	116.6±87.5	106.8±74.3	0.002
Serum 25-hydroxyvitamin D, ng/ml	19.4±10.1	16.7±11.2	0.07
Dialysate calcium, mmol/L	2.5±0.3	2.5±0.2	0.20
Nutritional vitamin D treatment, %	9	5	< 0.001
Activated vitamin D treatment, %	32	37	0.02
Cinacalcet treatment, %	7	2	< 0.001
Phosphate-binding agent treatment, %	35	31	0.01 ^{L8}

Who is at risk? Other medications

Characteristic	Cases (n=1030)	Controls (n=2060)	P Value
Serum albumin, g/dl	3.5 ± 0.5	3.5 ± 0.6	0.49
Hemoglobin, g/dl	10.2±1.5	10.4±1.5	0.01
Serum bicarbonate, mEq/L	22.5±3.9	22.5 ± 4.0	0.61
sPKtV	1.5±0.4	1.6±0.4	< 0.001
Warfarin treatment, %	14	4	< 0.001
Statin treatment, %	25	22	0.04
ESA treatment, %	45	56	< 0.001
ACEI/ARB treatment, %	15	13	0.22

J Am Soc Nephrol 27: 3421-3429, 2016.

Diagnosis

- Clinical suspicion
 - Derangements in CKD-MBD parameters often present but not necessarily so
 - German registry data
 - 86% of calciphylaxis patients had either normal or low calcium
 - 40% had either normal or low phosphate

Table 2. Differential Diagnosis of Calciphylaxis.

Warfarin-induced skin necrosis

Atherosclerotic vascular disease

Venous stasis ulcer

Cellulitis

Cholesterol embolization

Dystrophic calcinosis cutis

Livedoid vasculopathy

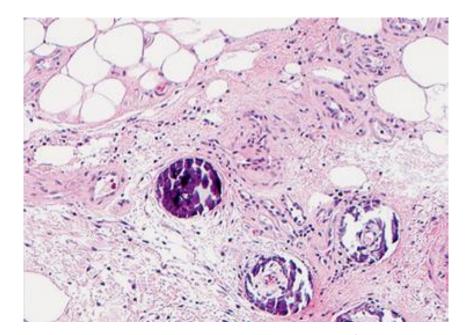
Nephrogenic systemic fibrosis

Oxalosis

Pyoderma gangrenosum

Purpura fulminans

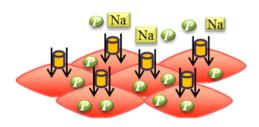
Necrotizing vasculitis


Martorell's ulcer

What is the pathology of calciphylaxis?

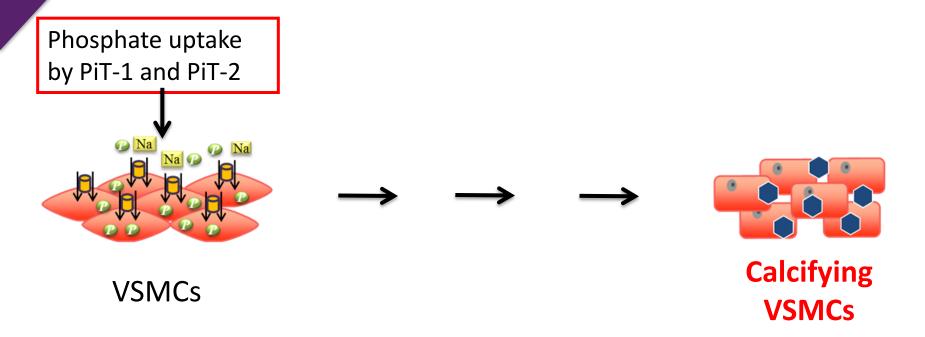
Classic histologic features

- Calcification
- Fibrointimal hyperplasia
- Thrombosis

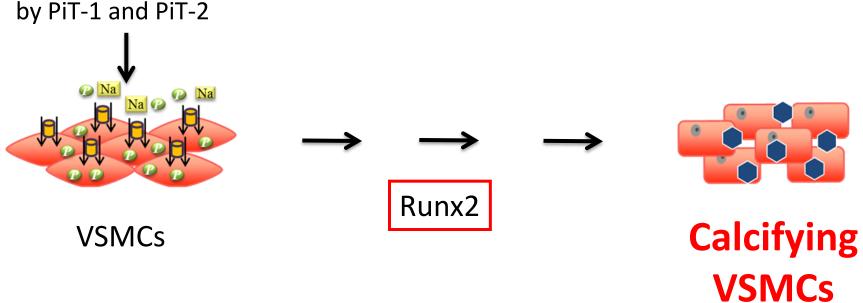


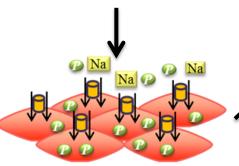
Calcification

- Active cell-mediated process
- Depends on balance between promoters and inhibitors
- Adipocytes, vascular smooth muscle cells and osteoblasts share common mesenchymal origin


Vascular calcification – an active, cell-mediated process

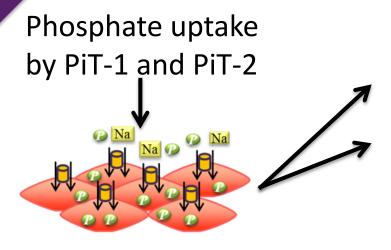
VSMCs


Shobeiri, N. 2013. *The Pathogenesis of Vascular Calcification in Chronic Kidney Disease: Consequences and Treatments.* (Doctoral Thesis). Retrieved from QSpace.



Phosphate uptake by PiT-1 and PiT-2

Phosphate uptake by PiT-1 and PiT-2



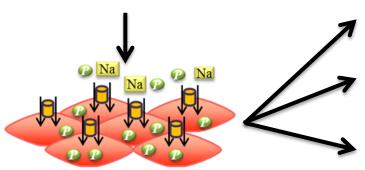
VSMCs

Osteoblastic Transdifferentiation

- Osteoblasts are bone forming cells
- Secrete bone matrix proteins

VSMCs

Osteoblastic Transdifferentiation


Nidus

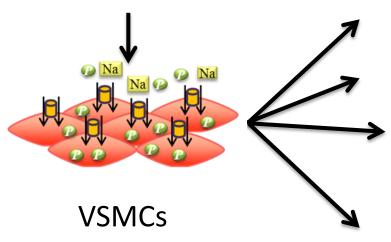
Formation

- Apoptotic Bodies
- Elastin matrix Degradation
- Matrix Vesicles

Phosphate uptake by PiT-1 and PiT-2

VSMCs

Osteoblastic Transdifferentiation


Nidus Formation

Promoters of Vascular Calcification

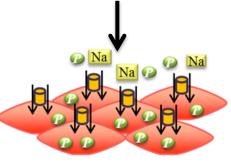
- Phosphate
- Calcium

Phosphate uptake by PiT-1 and PiT-2

Osteoblastic Transdifferentiation

Nidus Formation

Promoters of Vascular Calcification

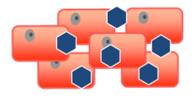

Inhibitors of Vascular Calcification

- Matrix Gla Protein
- Fetuin-A
- Magnesium

Mechanisms of Vascular Calcification

Phosphate uptake by PiT-1 and PiT-2

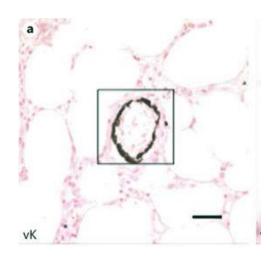
VSMCs

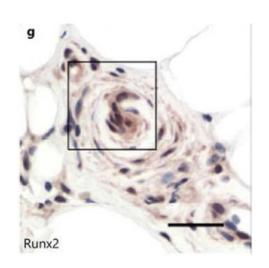

Osteoblastic Transdifferentiation

Nidus Formation

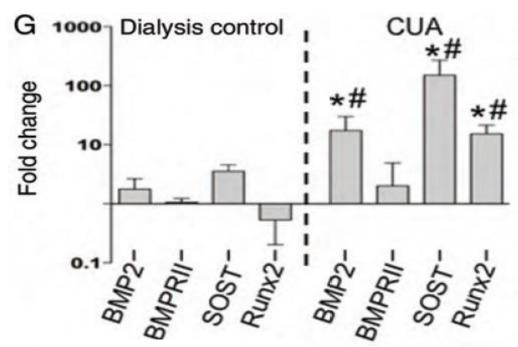
Inhibitors of Vascular Calcification

Promoters of Vascular

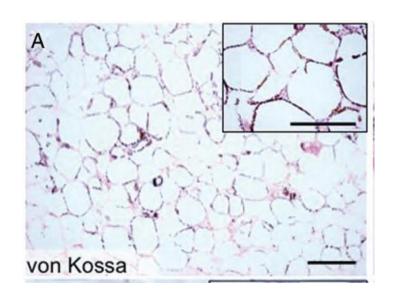

Tissue-Specific Mechanisms


Calcifying VSMCs

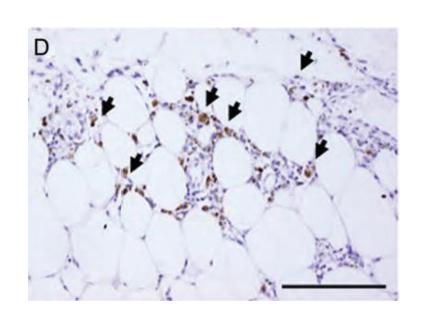
Calcification in arterioles in clinical calciphylaxis


Calcification in arteriole

Up-regulation of Runx2



Calciphylaxis – osteogenic phenotype



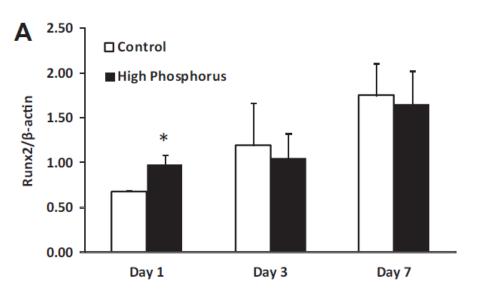
Adipocytes calcify in calciphylaxis

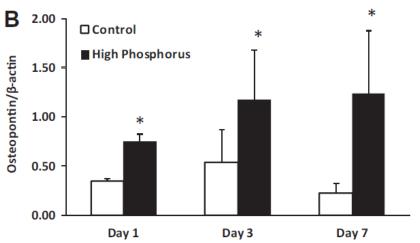
Calcification of adipocytes

BMP-2 staining of adipocytes

Obesity

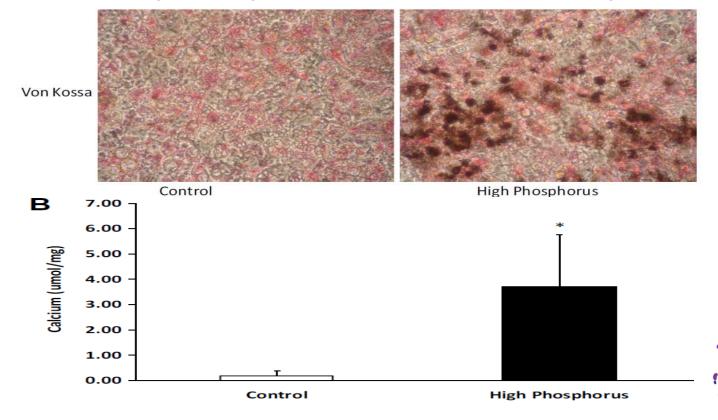
Adipocyte induced arterial calcification is prevented with sodium thiosulfate

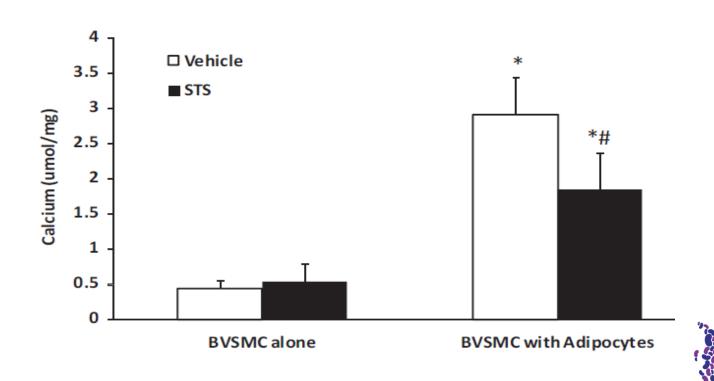

Neal X. Chen a,*, Kalisha O'Neill , Nader Kassis Akl , Sharon M. Moe a,b



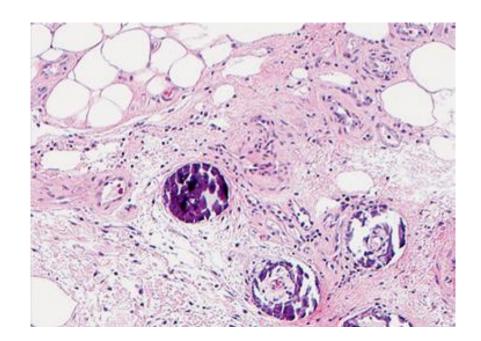
^a Divison of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA

^b Roudebush VA Medical Center, Indianapolis, IN, USA


Adipocytes express the 'osteogenic program'



Mature adipocytes exposed to high phosphate media calcify


Adipocytes enhance calcification of VSMCs

Pathology of calciphylaxis

Histologic features

- Calcification
- Fibrointimal hyperplasia
- thrombosis

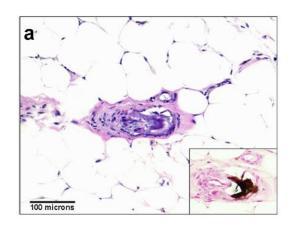
How specific are these histologic findings for calciphylaxis?

Questionable specificity of histologic findings in calcific uremic arteriolopathy

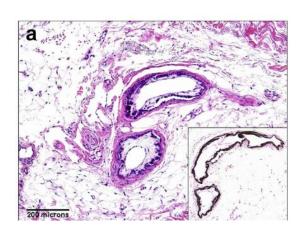
see commentary on page 244

Carla L. Ellis¹ and W. Charles O'Neill²

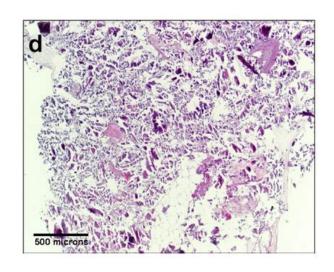
¹Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA; and ²Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA

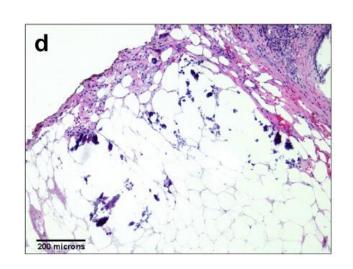

Table 1 | Patient characteristics

	Amputations	Skin biopsies	P Value
N	34	37	
Age (mean \pm SEM)	62 ± 1.9	53 ± 2.5	0.006
Gender (% female)	29	81	< 0.0001
Diabetes (%)	71	51	0.14
ESRD (%)	100	78	0.005
Dialysis	91	76	
Transplantation	9	3	
Warfarin use (%)	21	49	0.02


ESRD, end-stage renal disease.

How specific is a finding of vascular calcification in a skin biopsy?

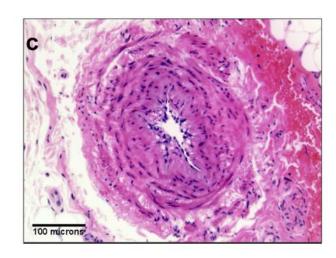

Healthy skin in patient with ESKD


Suspected calciphylaxis

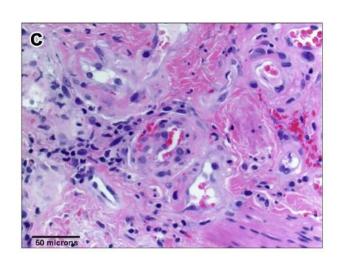
Prevalence of VK positive calcification was similar between skin biopsies performed for suspicion of calciphylaxis and healthy skin from amputation margins

How specific is a finding of calcification of the subcutaneous fat in a skin biopsy?

Healthy skin in patient with ESKD

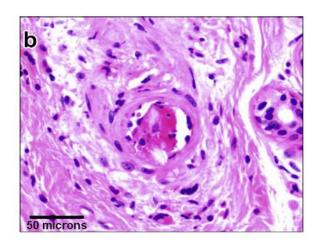


Suspected calciphylaxis

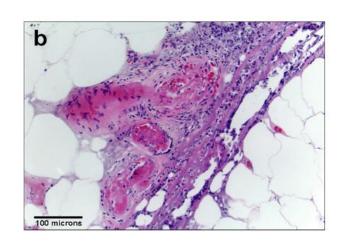

Prevalence of extravascular soft tissue calcification was not different

How specific is a finding of intimal hyperplasia in a skin biopsy?

Healthy skin in patient with ESKD



Suspected calciphylaxis


Prevalence of intimal hyperplasia was low in both groups

Kidney International (2018) 94, 390–395

How specific is a finding of arterial thrombosis in a skin biopsy?

Healthy skin in patient with ESKD

Suspected calciphylaxis

Only the presence of thrombosis was significantly different between the two groups and only in 'high clinical suspicion biopsies'

Summary: pathology

- Histologic changes in small arteries and arterioles of skin and subcutaneous tissues ascribed to calciphylaxis can occur in patients with ESKD without clinical evidence of calciphylaxis
- Combination of calcification and thrombosis may be important –more prevalent in high-suspicion skin biopsies than in amputation specimens
- Adipocytes may play a key role in the development of central calciphylaxis
- Calciphylaxis remains a 'clinical diagnosis'

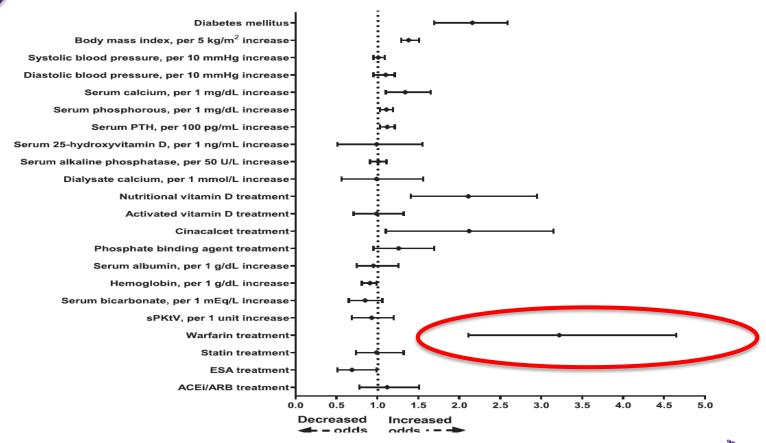
Calciphylaxis: who is at risk?

- White, female, obese, diabetic patients with worse
 CKD-MBD parameters at dialysis initiation
- Arguably many patients on dialysis are at risk for CUA yet few will actually develop it – in fact, the majority will not
- overall incidence of 3.49 per 1000 patient years

Why so many at risk yet so few develop?

- Triggers
 - Vitamin K antagonism
 - Skin trauma
 - Thrombotic disorders
 - Genetic predisposition

Calciphylaxis is a condition of induced systemic hypersensitivity in which, during a "critical period" after sensitization by a systemic calcifying factor (for example, vitamin-D compounds, parathyroid hormone, sodium sulfathiazole), treatment with certain challengers (for example, metallic salts,



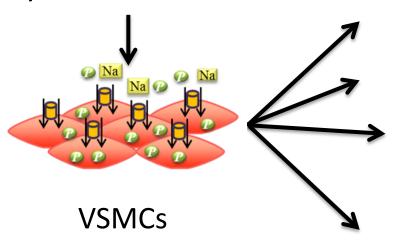
Triggers: Vitamin K status

Cl	C (1030)	Cambrala (n. 2040)	P Value 0.49	
Characteristic	Cases (n=1030)	Controls (n=2060)		
Serum albumin, g/dl	3.5±0.5	3.5±0.6		
Hemoglobin, g/dl	10.2±1.5	10.4±1.5	0.01	
Serum bicarbonate, mEq/L	22.5±3.9	22.5 ± 4.0	0.61	
sPKtV	1.5 ± 0.4	1.6 ± 0.4	< 0.001	
Warfarin treatment, %	14	4	<0.001	
Statin treatment, %	25	22	0.04	
ESA treatment, %	45	56	< 0.001	
ACEi/ARB treatment, %	15	13	0.22	

J Am Soc Nephrol 27: 3421–3429, 2016.

Calcific uraemic arteriolopathy (calciphylaxis): data from a large nationwide registry

Vincent M. Brandenburg^{1,2}, Rafael Kramann^{2,3}, Hansjörg Rothe⁴, Nadine Kaesler³, Joanna Korbiel⁵, Paula Specht¹, Sophia Schmitz⁶, Thilo Krüger³, Jürgen Floege^{2,3} and Markus Ketteler⁴


Table 3. Medication use in the group of dialysis patients at the time of CUA development^a

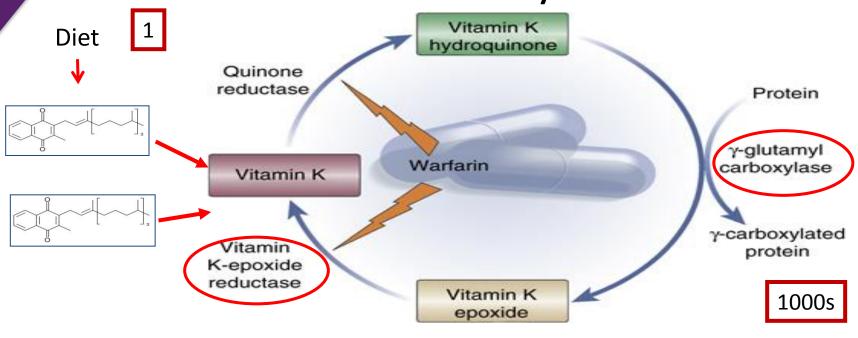
Medication ^a	All HD/HDF, pa	atients, $n = 193$	PD, <i>n</i> = 25	
	Yes	No	Yes	No
Active vitamin D (calcitriol, paricalcitol, others)	102 (53%)	87 (45%)	15 (60%)	9 (36%)
Cinacalcet	50 (26%)	137 (71%)	12 (48%)	12 (48%)
Any phosphate binder (PB) ^b	149 (77%)	41 (21%)	20 (80%)	4 (16%)
Calcium-containing PBb			11 (44%)	
Sevelamer ^b			7 (28%)	
Lanthanum carbonate ^b			1 (4%)	
Other PB ^b			2 (8%)	
VKAs	98 (51%)	93 (48%)	15 (60%)	9 (36%)
Erythropoietin and other	160 (83%)	29 (15%)	21 (84%)	2 (8%)
Erythropoiesis-stimulating				
agents, ESAs				

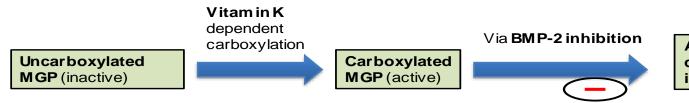
Mechanisms of micro-vessel Calcification

Phosphate uptake by PiT-1 and PiT-2

Osteoblastic Transdifferentiation

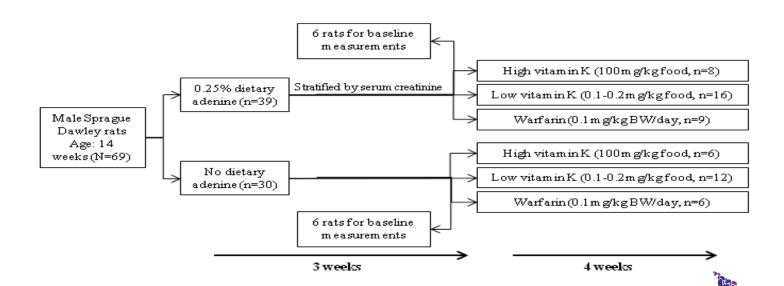
Nidus Formation

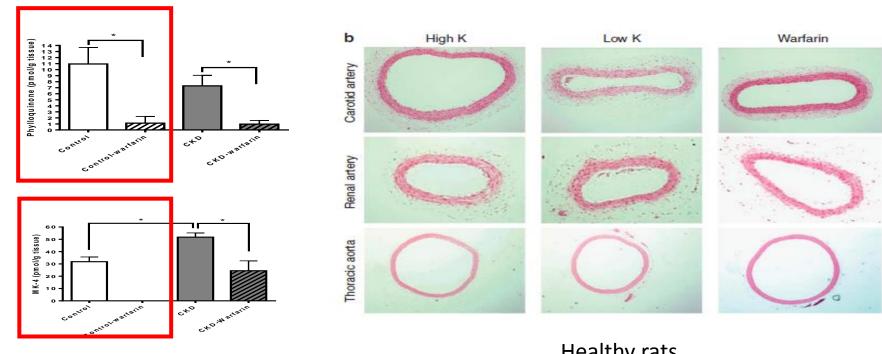

Promoters of Vascular Calcification

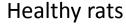

Inhibitors of Vascular Calcification

- Matrix Gla Protein
- Fetuin-A
- Magnesium

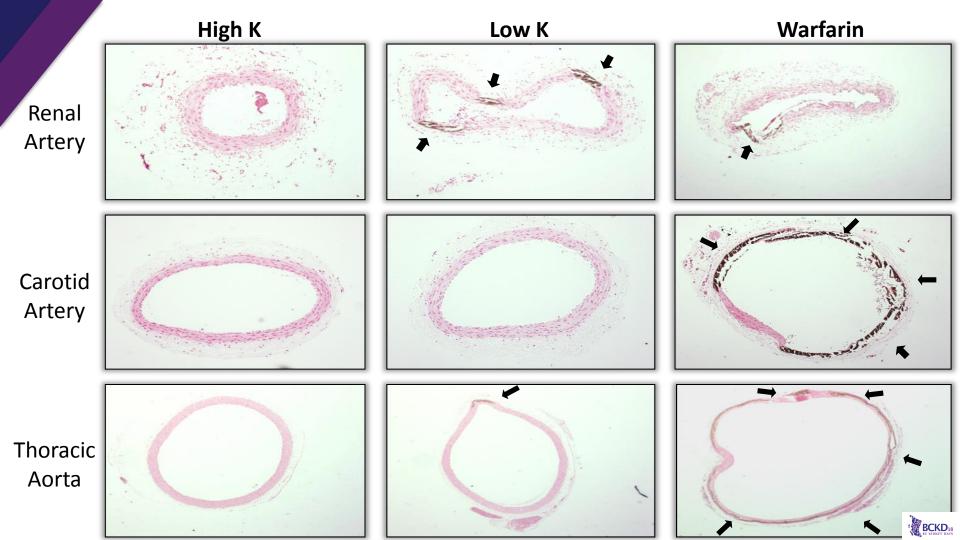
Vitamin K cycle



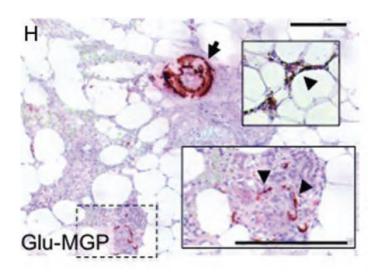

see commentary on page 782


Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease

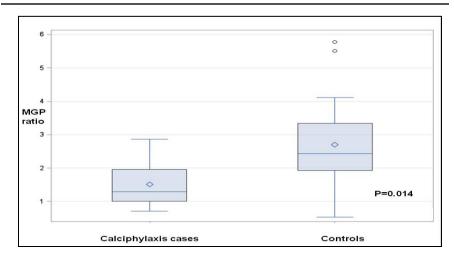
Kristin M. McCabe¹, Sarah L. Booth², Xueyan Fu², Navid Shobeiri¹, Judith J. Pang¹, Michael A. Adams¹ and Rachel M. Holden³

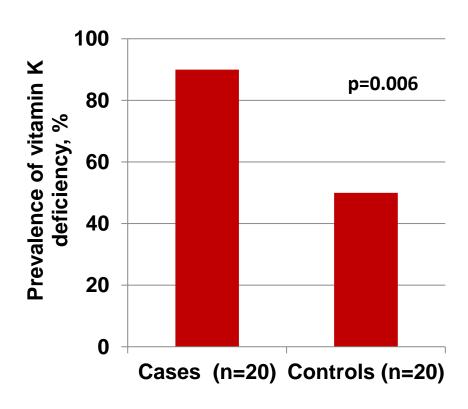


Warfarin lowered tissue vitamin K levels but did not cause VC in healthy rats



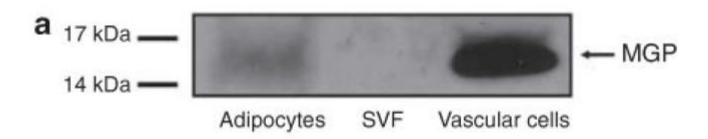
Triggers: Vitamin K




Calciphylaxis characterized by relative reductions in carboxylated MGP and elevated uncarboxylated MGP in biopsy samples

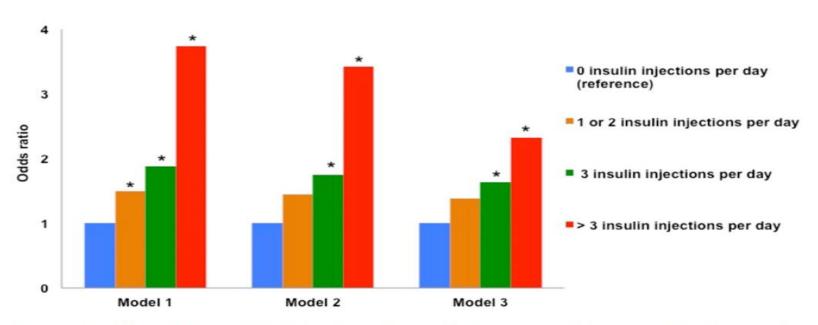
Calciphylaxis patients have low VK status

Characteristics	Cases (n=20)	Controls (n=20)	P value
Age, years	58 ± 16	62 ± 14	NA
Female gender, %	35	35	NA
Non-White race, %	10	10	NA
Warfarin therapy, %	30	30	NA


With permission Nigwekar, Malhotra, and Booth. J Am Soc Nephrol, 2017

Adipocytes secrete MGP

Using gene expression to predict the secretome of differentiating human preadipocytes


DM Mutch^{1,2,3,5}, C Rouault^{1,2,3}, M Keophiphath^{1,2,3}, D Lacasa^{1,2,3} and K Clément^{1,2,3,4}

MGP protein detected in the secretion media of adipocytes

Triggers: Trauma

Figure 2. ORs of future CUA involving lower abdomen and/or upper thigh areas by number of insulin injections per day at hemodialysis initiation. Model 1 is an unadjusted model; model 2 is adjusted for age, race, and sex; model 3 is adjusted for covariates

Triggers: Thrombophilia

JAMA Dermatology | Original Investigation

Association Between Hypercoagulable Conditions and Calciphylaxis in Patients With Renal Disease A Case-Control Study

Table 3. Hypercoagulability Laboratory Values Restricted to Patients With Stage 5 Chronic Kidney Disease (CKD5)^a

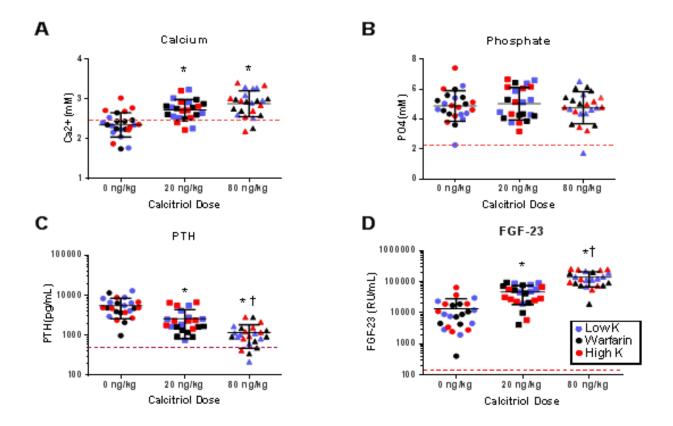
Laboratory Panel and Hypercoagulable Definition	Cases (n = 28)	Controls (n = 43)	P Value
Antithrombin III, functional/antigen <80%	16 (5, 31)	7 (1, 14)	.63
Anticardiolipin antibodies, IgG/IgM >15 U	21 (4, 19)	9 (2, 22)	>.99
Factor V Leiden, heterozygous mutation	18 (0)	6 (0)	>.99
Factor VIII, >200%	4 (4, 100)	2 (0)	.07
Heparin PF4 antibody, IgG HIT antibodies detected	14 (2, 14)	9 (2, 22)	>.99
Homocysteine level, >1.62 mg/L	15 (12, 80)	9 (6, 67)	.64
Lupus anticoagulant, screening and confirmatory positive test result	23 (12, 52)	9 (0)	.01
Protein C, functional/antigen <70% or activity <55%	16 (8, 50)	4 (0)	.12
Protein S, functional/antigen <70% or activity <55%	16 (6, 40)	5 (3, 60)	.61
Prothrombin, G20210A mutation	10 (0)	2 (0)	>.99
Any thrombophilia, ≥1 abnormal test result	27 (21, 78)	20 (12, 60)	.21
Combined thrombophilia, ≥2 abnormal test results	24 (15, 63)	12 (1, 8)	.004

Triggers: Genetic predisposition

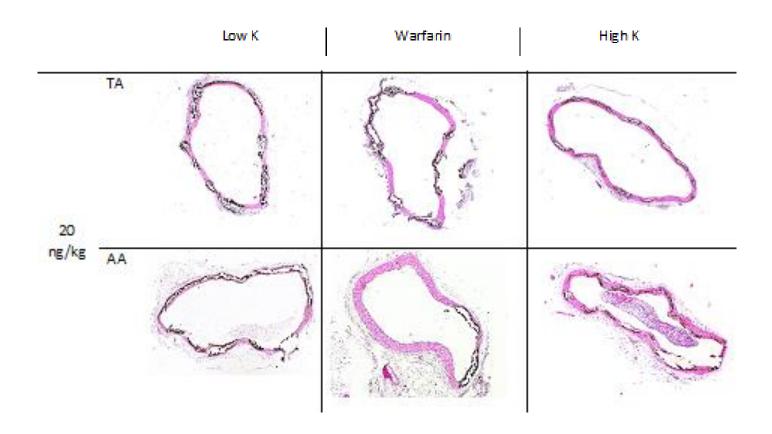
Ecto-5'-Nucleotidase CD73 (NT5E), vitamin D receptor and FGF23 gene polymorphisms may play a role in the development of calcific uremic arteriolopathy in dialysis patients – Data from the German Calciphylaxis Registry

Hansjörg Rothe^{1,2}*, Vincent Brandenburg³, Margot Haun⁴, Barbara Kollerits⁴, Florian Kronenberg⁴, Markus Ketteler¹, Christoph Wanner²

- 144 HD patients from the German calciphylaxis registry were compared with 370 dialysis patients without calciphylaxis
- Investigation of 10 target genes


Triggers: genetic predisposition

Gene encoding	SNP	OR [§]	95% confidence interval	P value
CD73	Rs9444348	1.48	1.11–1.97	0.008
FGF23	Rs12812339	0.58	0.38–0.87	0.009
FGF23	Rs7310492	1.49	1.06–2.09	0.021
CD73	Rs4431401	1.71	1.08–2.71	0.023
VDR	Rs10783223	0.73	0.55–0.96	0.025
VDR	Rs17882106	1.65	1.06–2.56	0.026
FGF23	Rs6489536	0.70	0.51–0.96	0.026
FGF23	Rs11063118	1.41	1.03–1.92	0.032
FGF23	Rs13312747	1.50	1.01–2.25	0.047


Calciphylaxis – other potential triggers

- Autoimmune disorders
- Recurrent hypotension
- Vitamin D analogues

Calcitriol treatment in rats with CKD

CKD rats treated with 20 ng/kg calcitriol daily

Two cases – triggers

- Patient A 2004
 - ESKD on PD
 - Poor phosphate control

- Obese
- Insulin injections

- Patient B -2016
 - KT
 - Normal phosphate

- Warfarin
- Calcitriol

Adapted from Curr Opin Nephrol Hypertens 2015, 24:5

Nephrologist

- Clinical diagnosis
 - Skin biopsy
- Dialysis prescription
- CKD-MBD management
- Decision regarding antibiotics
- Risks/benefits of warfarin and alternative agents (if applicable)
- Specific treatment decisions
- Enroll in registry or clinical trial

Skin biopsy: when to perform

- To support your clinical diagnosis and rule out other conditions
- Early, atypical lesions
- Research studies
- Calciphylaxis suspected in non-ESKD patient
- Punch biopsy safer but has limited depth and can be non-diagnostic
- Biopsy active lesion margin rather then central or necrotic area
- Special stains should include von Kossa

Skin biopsy: when not to perform

- Not needed for a patient with ESKD with classic presentation of a painful necrotic ulcer covered with a black eschar
- A skin biopsy may be contra-indicated in:
 - Acral, penile or infected lesions
- High risk of provoking new, non-healing ulcers and infection

Dialysis prescription

- Increase length or frequency
 - Warranted for patients with severe CKD-MBD parameters
 - No data
- Transition to hemodialysis for patients on PD
 - No data
- Kidney transplantation
 - Case series of 3 patients receiving urgent KT after 2 to 4 weeks of onset of calcipylaxis *Transplantation Direct* 2016

CKD-MBD parameters + other measures

- Discontinue warfarin
- Rotate insulin injection sites
- Stop vitamin D and calcium
- Avoid high dialysate calcium
- ? Parathyroidectomy
 - Optimal PTH is not known
 - Risk of ABD long-term

Parathyroidectomy – what is the evidence?

- Single-center studies
- All retrospective
 - Selection bias
 - Confounding
- Details regarding actual surgical procedure and risks/complications are limited
- Risk of hungry bone syndrome requiring calcium and calcitriol
- Not recommended by 'experts' in the era of calcimimetics
 - EVOLVE trial showed a reduced incidence of calciphylaxis in the cinacalcet group

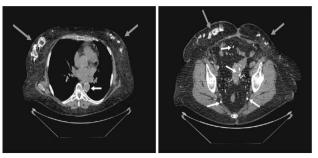

Dermatologist

- Clinical diagnosis
- Skin biopsy
- Wound care
- Decision regarding antibiotics

Pathologist

- Skin histopathology review
- Request for special stains (e.g. von Kossa)

Radiologist


 Evidence of calcification on Xray, CT or bone scan

Diagnosis: Imaging studies

May support the diagnosis when a biopsy is inconclusive or contraindicated

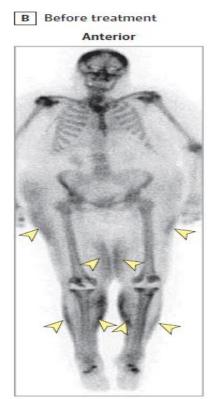


Fig. 1 Extraosseous calcifications detected by CT imaging. *Left*: Unenhanced thoracic computed tomography with severe subcutaneous calcifications of both mammae, pronounced on the right side (*grey arrows*), bronchial calcifications and nearly circular aortosclerosis (*white arrow*). *Right*: Precontrast abdominal computed tomography with disseminated subcutaneous calcifications in the abdominal wall (*grey arrows*) and in smaller pelvic arteries (*white arrows*)

Increased radiotracer uptake in soft tissues on nuclear bone scanning

Pain and Palliative Care

- **Pain medications**
 - **Opiates**
 - Opiate alternatives
 - Spinal anesthetic agents
- Goals of care discussions

Surgeon and Wound Care Nurse

- Clinical diagnosis
- Surgical debridement
- Wound care
- Dressing changes
- Chemical wound debridement
- Hyperbaric oxygen

Original Article

Hyperbaric oxygen in the treatment of calciphylaxis: A case series and literature review

JENNIFER AN,¹ BRIDGET DEVANEY,² KHAI YANG OOI,¹ SHARON FORD,¹ GEOFF FRAWLEY² and SOLOMON MENAHEM¹

- 46 patients
- 44 sessions over 2 months led to complete healing in half the patients with peripheral disease

Table 3 Prior studies of the influence of hyperbaric oxygen therapy (HBOT) on calciphylaxis

Author	Year	Cohort	No. of HBOT treatments (range)	Other interventions	Outcome
Podymow et al. ¹⁵	2001	5	25–35	Nil	60% improved
					40% healed
Basile ²⁰	2002	11	20–108	PTHX	89% improved
					73% healed
Dwyer et al. ²¹	2002	1	23	Not reported	100% healed
Edsell et al. ²²	2008	20	17–83	PTHX	55% improved
					30% healed
Rogers et al. ²³	2008	12	7–41	Not reported	92% healed
Arenas et al. ²⁴	2008	2	20–30	Cinacalcet, STS, PTHX, sevelamer	100% improved
Alikadic <i>et al</i> . ²⁵	2009	1	19	lloprost infusion	100% healed
Baldwin <i>et al</i> . ²⁶	2011	7	10–65	Cinacalcet, sevelamer, STS	86% healed
			HBOT in 6 pts only		
New et al. ²⁷	2011	5	25–30	Calcitriol, cinacalcet , STS, PTHX, sevelamer	80% healed
			HBOT in 2 pts only		
Malabu <i>et al</i> . ²⁸	2012	6	Not reported	Cinacalcet, STS, PTHX	50% healed
Savoia et al. ²⁹	2013	4	Not reported HBOT in 3 pts only	Cinacalcet, STS	75% improved BCKD ₁₈ BC KIDNEY DAYS

Dietitian

- Dietary phosphate restriction
- Avoiding and treating protein malnutrition

Specific pharmacotherapeutic agents

- Sodium thiosulfate
- Cinacalcet
- Vitamin K
- Bisphosphonates

Sodium Thiosulfate

- Mechanism of action Unknown
- Hypotheses
 - Vaso-dilatory and antioxidant properties
 - Increase in calcium solubility
 - Combination with calcium to form a dialyzable salt
- Administration
 - Typical dose is 25 g IV 3x weekly during last 30-60 mins of HD
 - Dose for PD, CKD, KT, pediatrics unknown

Sodium Thiosulfate

- Limitations
 - Limited access
 - Cost \$10,000
- Adverse Effects
 - Nausea, vomiting and headache
 - Usually improve with subsequent infusions
 - Severe metabolic acidosis
 - Unknown mechanism
 - Dose-response effect on AG
 - ? Due to oxidation of STS by the liver

Box 3 | Adverse effects of STS

Frequently reported

- · Nausea and vomiting
- Headache
- Decreased serum bicarbonate level
- Increased serum anion gap
- Increased serum sodium levels

Single reports

- Rhinorrhea
- Sinus congestion
- Neurological effects (bad taste, periorbital tingling, decreased hearing)
- Hypocalcemia with increased QT interval
- Hunger
- Weakness

Abbreviation: STS, sodium thiosulphate.

Sodium Thiosulfate Therapy for Calcific Uremic Arteriolopathy

Sagar U. Nigwekar,*† Steven M. Brunelli,†§ Debra Meade, Weiling Wang, Jeffrey Hymes, and Eduardo Lacson Jr.

- Retrospective cohort study of 172 patients with calciphylaxis who were treated with STS
- No control subjects
- Incomplete follow-up for patient-level outcomes (n=53)
- Median dose was 25 g and median number of doses was 38

Sodium Thiosulfate Therapy for Calcific Uremic Arteriolopathy

Sagar U. Nigwekar,*† Steven M. Brunelli,†§ Debra Meade, Weiling Wang, Jeffrey Hymes, and Eduardo Lacson Jr.

- Among surveyed patients, calciphylaxis status was:
 - resolved in 26.4%
 - markedly improved in 18.9%
 - improved in 28.3%
 - did not improve in 5.7%
 - unknown 20.8%

Table 2. Additional treatment modalities that were undertaken before or during sodium thiosulfate therapy

Treatment Modality	Cases (%)
Initiation/increased dose of non-calcium-	59
based phosphorous binder	
Initiation of cinacalcet	57
Wound care	34
Discontinuation of vitamin D compounds	30
Increased frequency of hemodialysis sessions	15
Surgical parathyroidectomy	15
Lowering of dialysate calcium	15
Initiation of corticosteroids	9
Switching from nonselective vitamin D analogue to selective analogue	8
Discontinuation of warfarin	6
Discontinuation of calcium-based phosphate binders	4

Use of sodium thiosulphate in a multi-interventional setting for the treatment of calciphylaxis in dialysis patients

- 27 HD patients treated with STS for 3 months
 - Complete remission: 52%
 - Partial remission: 19%
 - No response: 30%
- High frequency of co-interventions
 - Vitamin K, HBO, PTH lowering strategies, warfarin cessation, calcium cessation, increased dialysis intensity

Vitamin K

 Some evidence from general population that vitamin K decreases calcification

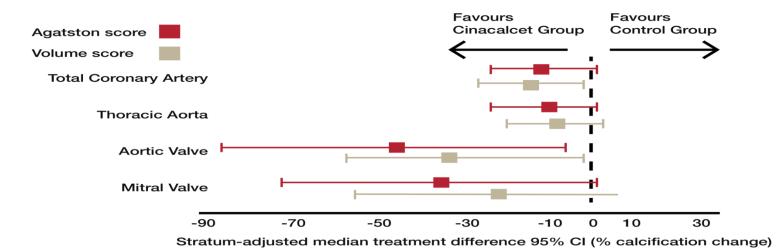
	VitaVasK	iPACK-HD
Location	Europe	Canada
Patient population	HD patients	HD patients
CAC score criteria	≥ 100 AUs	≥ 30 AUs
Outcome	CAC progression	CAC progression
Drug	K1	K1
Dose	5 mg	10 mg
Frequency	3 times per week	3 times per week
Duration	18 months	12 months

The Effect of Cinacalcet on Calcific Uremic Arteriolopathy Events in Patients Receiving Hemodialysis: The EVOLVE Trial

Jürgen Floege,* Yumi Kubo,† Anna Floege,* Glenn M. Chertow,‡ and Patrick S. Parfrey§

- 3,883 HD patients with sHPT
- Randomly assigned 1:1 to receive
 - Cinacalcet (Sensipar or Mimpara, Amgen, Inc.); or
 - Placebo
- + Conventional CKD-mineral & bone disorder therapies
- F/U 64 months
 - 6 (cinacalcet) and 18 patients (placebo) developed CUA

CUA – Cinacalcet (EVOLVE)


Table 5. Multivariate regression using Fine-Gray subdistributional hazards model of calcific uremic arteriolopathy adverse events (safety analysis set)

Multivariate Model	Hazard Ratio (95% CI)	P Value
Treatment (cinacalcet versus placebo)	0.25 (0.10 to 0.67)	< 0.01
Male sex (reference, female)	0.33 (0.14 to 0.75)	< 0.01
Body mass index (per kg/m ²)	1.09 (1.05 to 1.13)	< 0.001
Diastolic BP (per 10 mmHg)	1.50 (1.19 to 1.90)	< 0.001
History of dyslipidemia	2.15 (0.90 to 5.15)	0.09
History of parathyroidectomy	5.79 (1.79 to 18.70)	0.003
Baseline tobacco use (reference, never use)		
Current	1.79 (0.54 to 5.89)	0.34
Former	3.04 (1.19 to 7.74)	0.02

Baseline variables were included using backward elimination. Heart failure and diabetes mellitus were removed during the backward elimination procedure at a significance level of 0.10. Additional baseline variables of age, vitamin K antagonist use, vitamin D sterol use, and peripheral vascular disease were evaluated but not included in the multivariate regression model using the backward elimination procedure because they did not meet the entry criteria, P < 0.25 in a univariate model. 95% CI, 95% confidence interval.

ADVANCE: The first RCT to show that Cinacalcet may attenuate the progression of valvular calcification in SHPT

Bisphosphonates

- Pyrophosphate analogues
- Inhibition of osteoclasts
- Prospective series only

Patient A – central calciphylaxis

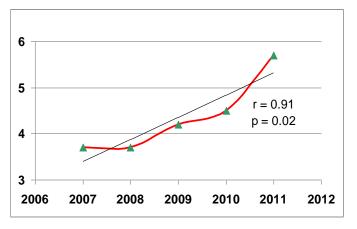
- 42 year old female
- Obese
- ESKD secondary to FSGS
- Type 2 DM on insulin injections
- Peritoneal dialysis
- Presented April, 2004

Patient A - 2004

- Calcium discontinued; NCPB started
- Switched to daily HD
- Surgical debridement and wound care
- Hyperbaric oxygen 25 sessions

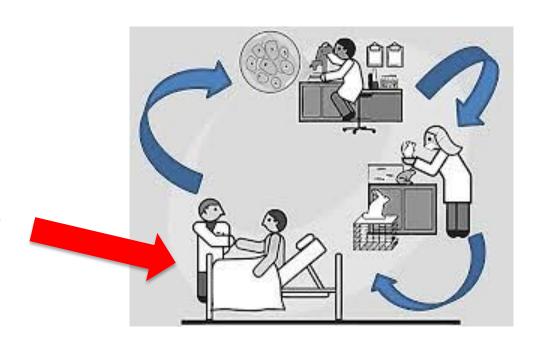
Patient B - 2016

- 55 year old male
- Normal weight
- ESKD secondary to hypertension
- Kidney transplant 1991
- Baseline creatinine ~ 180 umol/L
- Presented May, 2016



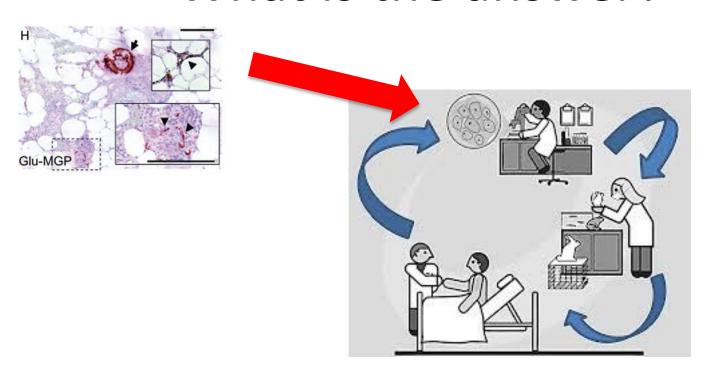
Patient B - 2016

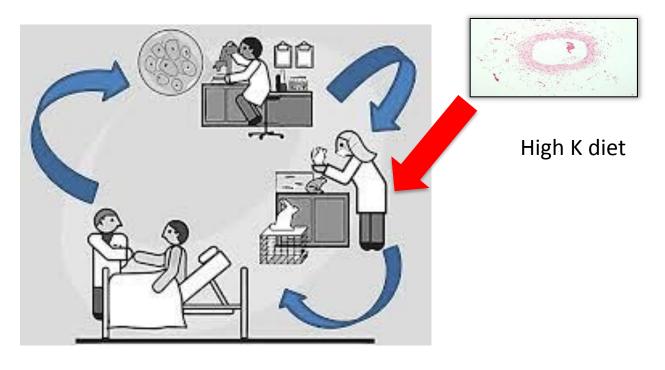
- Warfarin discontinued
- Calcitriol discontinued
- Cinacalcet started
- Surgical debridement and wound care
- Vitamin K 10 mg PO thrice weekly x 6 weeks
- Bisphosphonate 30 mg IV x 1 dose
- Hyperbaric oxygen 23 sessions


Where are we in 2018?

- we have a rare disease with a rising incidence
- we have therapies that we try
- we have no rigorous scientific evidence

Incidence per 10,000 dialysis patients




Clinical observations

VK antagonism

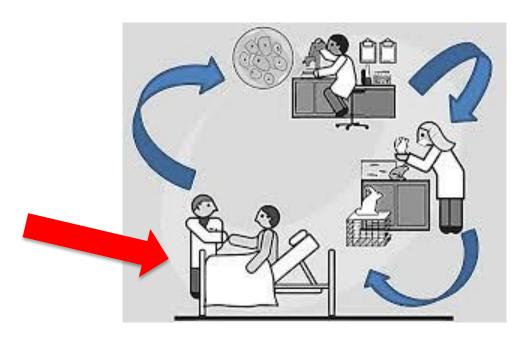
Translational Medicine

Translational Medicine

Translational Medicine

Translational Medicine

Improving the evidence: RCT of Vitamin K


VitK-CUA	Clinicaltrials.gov number,	Phase 2,	Massachusetts	Single-center, randomized, double-blind,
	NCT02278692	clinical trial	General	placebo-controlled clinical trial to evaluate the
			Hospital	biological efficacy and safety of phytonadione
			·	(vitamin K1) in hemodialysis patients with
				calciphylaxis

- Study eligibility: adult HD patients with calciphylaxis
- Study intervention: vitamin K1 10 mg three times/week for 12 weeks
- Outcomes: pain, skin lesions

Clinical observations

- CKD-MBD parameters
- CKD-MBD treatments
- Obesity
- Trauma

Translational Medicine

Osteogenic program 'Adipocyte calcification'

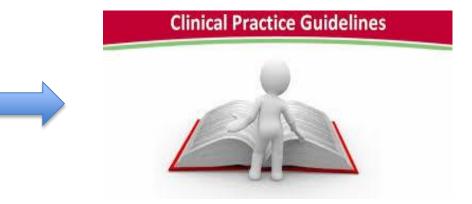
Translational Medicine

Translational Medicine

Improving the evidence: Active registries

EuCalNet Registry	Prospective registry	RWTH Aachen University	Observational, prospective, non-interventional collection of data and samples from patients with uremic and non-uremic calciphylaxis
Partners Calciphylaxis Biobank	Prospective registry	Massachusetts General Hospital	Observational, prospective, non-interventional collection of data and samples from patients with uremic and non-uremic calciphylaxis
The UK Calciphylaxis Study	Prospective registry	Salford Royal NHS Foundation Trust (UK)	Observational, prospective, non-interventional collection of data and samples from patients with calciphylaxis in the setting of chronic kidney disease

Improving the evidence: Two RCTs of sodium thiosulfate


Study Name	Study ID	Study Type	Sponsor	Comments
A clinical trial	ISRCTN number,	Phase 2/3,	Dr. F. Köhler	Multicenter, open-label clinical trial to evaluate
with Sodium	ISRCTN73380053	clinical trial	Chemie GmbH	the efficacy of intravenous Sodium Thiosulfate
Thiosulfate for			(Germany)	for treatment of calciphylaxis wounds in
the treatment of				hemodialysis patients
Calciphylaxis				
CALISTA Trial	Clinicaltrials.gov number, NCT03150420	Phase 3, clinical trial	Hope Pharmaceuticals	Multicenter, randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of intravenous Sodium Thiosulfate Injection for treatment of acute calciphylaxis-associated pain in hemodialysis patients

The way forward

Table 7. Recorded therapeutic strategies in 165 CUA dialysis patients (76% of the entire dialysis CUA cohort) [multiple answers possible; single answers in n = 16 (10%) cases]

Intensifying dialysis therapy	
Increase of dialysis duration and/or frequency	16.9%
Switch from haemodialysis to haemodiafiltration	0.8%
Switch from PD to HD	1.5%
Reduction	
Lowerin	23.8%
Lowerin	1.5%
Reductio	16.2%
including	
Vitamin K	
Stop VK	25.4%
Give vita	17.7%
Secondary	
Initiate (10.8%
Stop cin	2.3%
Parathyi	2.3%
Initiate	2.3%
Calcificatio	
Apply S'	21.5%
Give bis	2.3%
Fresh fre	1.7%
Tissue oxy	
Revascu	3.8%
Antibiotics	16.1%
Surgical wound management	
Including necrosectomy, debridement and	29.2%
skin transplantation	
Others	
Application of glucocorticoids	3.1%
Prostaglandin infusion	0.7%

Thank you

