

THE UNIVERSITY OF BRITISH COLUMBIA

Personalized Transplant Care

James H Lan, MD, FRCP(C), D(ABHI) Clinical Assistant Professor, University of British Columbia Nephrology & Kidney Transplantation, Vancouver General Hospital Pathology & Lab Medicine, University of British Columbia BC Transplant Immunology Consultant BC Kidney Day, November 2, 2018

Evolution of immunosuppression in transplantation

Paradox of improvement in acute rejection but stagnant long-term outcomes

Meier-Kriesche, AJT, 2004

Lamb, AJT, 2011

Deleterious impact of donor-specific antibodies

Who should be treated?

Due to the toxicity and cost of treatment, the decision to treat should be based on risk-stratification using available clinical, histologic, and DSA information

Preformed vs. De Novo DSA

Aubert, JASN 2017

De Novo DSA are Mainly Class II

	Willicombe	DeVos	Musat	Smith	Palmer	
	Transplantation 2012	Kidney Int 2012	AJT 2011	AJT 2011	Transplantation 2002	DBC
Population	Renal	Renal	Liver	Heart	Lung	
De Novo DSA	18.2% (92/502)	18% (62/347)	63% (27/43)	33% (57/173)	10% (9/90)	
DQ DSA	54.3% (50/92)	53% (33/62)	81% (22/27)	72% (41/57)	56% (5/9)	8

Clinical predictors of allograft loss outweigh C1q and DSA titering

Mul	tivariate Model (n=70, 27 events)*	Hazard Ratio	p value
A)	C1q positive	1.06 (0.5-2.4)	0.88
	Non-Adherence	4.22 (1.4-14.4)	<0.01
	Clinical vs. Subclinical Phenotype	2.38 (1.0-6.9)	0.05
B)	<i>dn</i> DSA Titer ≥1:64	1.41 (0.4-9.4)	0.65
	Non-Adherence	3.97 (1.2-14.0)	<0.01
	Clinical vs. Subclinical Phenotype	2.51 (1.0-6.9)	0.04
C)	dnDSA Titer ≥1:1024	0.57 (0.2-1.4)	0.23

9

Clinical vs. Subclinical Phenotype	3.04 (1.2-8.6)	0.02
*A multivariate model identified non-adherence and clinical predictors. The effect of C1g and dnDSA titer after adjustment	phenotype as the only two for non-adherence and clinical	significant
are shown above.		L

5.17 (1.6-18.0)

< 0.01

Non-Adherence

General approach to patients with DSA and AMR

*Screen all patients for the cause of AMR **Optimize maintenance immunosuppression

- 6.4: We suggest treating antibody-mediated acute rejection with one or more of the following alternatives, with or without corticosteroids (2C):
 - plasma exchange;
 - intravenous immunoglobulin;
 - anti-CD20 antibody;
 - lymphocyte-depleting antibody.

KDIGO, AJT, 2009

Standard of Care:

PLEX + IVIG
 High dose IVIG

FDA AMR Workshop, Archdeacon, AJT, 2011

Heterogeneity of clinicians' treatment choices

Plasmapheresis, IVIG, +/- rituximab and/or bortezomib	66.3% (63)	32.6% (31)	52.6% (50)	45.3% (43)]
IVIG +/- steroids	16.8% (16)	34.7% (33)	25.3%(24)	23.2% (22)	-
Steroids only	0.0% (0)	7.4% (7)	6.3% (6)	6.3% (6)	
Conservative treatment only	7.4% (7)	17.9% (17)	9.5% (9)	22.1% (21)	Schinstock, AJT 2018
Other	8.4% (8)	5.3% (5)	6.3% (6)	3.2% (3)	12
Unanswered	1.1% (1)	2.1(2)	0.0% (0)	0.0% (0)	1

¹IVIG = 100 mg/kg Pulse = methylpred 500 mg IV Optimize MMF and Tacrolimus

²Rituximab dose #2 based on clinical indication and if CD19/20 \geq 5 cells/mm²

	No. o	f studies			Quality assessmen	t		
Therapeutic strategy	(No. of p	articipants)	Risk of bias ^a	Inconsistency	Indirectness	Imprecision	Publication bia	s Quality
Plasmapheresis and IVIG	,							
RCTs	N	o studies						
Nonrandomized studies	3 2	2 (146)	Serious (-1)	Serious (-1)	No indirectness	Serious (-1)	Unlikely	Very low
Study	Year	N				HR (9	95% CI)	Weight
Böhmig	2007	10 -				0.16 (0.02, 1.61)	8.44
Bonomini	1985	44				0.36 ((0.15, 0.86)	24.42
Blake	1990	38				0.66 ((0.29, 1.50)	25.41
Allen	1983	27		-		1.23 (0.51, 2.97)	24.42
Kirubakaran	1981	24				2.91 (0.77, 10.97)	17.30
Overall (I-squ	uared = 59.	1%, p = 0.04	4)	<		0.76 (0.35, 1.63)	100.00
NOTE: Weigh	nts are from	random effe	cts analysis					
19. 		.01			1	15		
			Favours Antib	ody Removal	Favours Co	ontrol		

Rituximab

One-Year Results of the Effects of Rituximab on Acute Antibody-Mediated Rejection in Renal Transplantation

RITUX ERAH, a Multicenter Double-Blind Randomized Placebo-Controlled Trial

Bénédicte Sautenet, MD,^{1,2} Gilles Blancho, MD, PhD,³ Mathias Büchler, MD, PhD,^{1,2,4} Emmanuel Morelon, MD, PhD,⁵ Olivier Toupance, MD,⁶ Benoit Barrou, MD, PhD,⁷ Didier Ducloux, MD, PhD,⁸ Valérie Chatelet, MD,⁹ Bruno Moulin, MD, PhD,¹⁰ Caroline Freguin, MD,¹¹ Marc Hazzan, MD, PhD,¹² Philippe Lang, MD, PhD,¹³ Christophe Legendre, MD, PhD,¹⁴ Pierre Merville, MD, PhD,¹⁵ Georges Mourad, MD, PhD,¹⁶ Christine Mousson, MD, PhD,¹⁷ Claire Pouteil-Noble, MD, PhD,¹⁸ Raj Purgus, MD,¹⁹ Jean-Philippe Rerolle, MD,²⁰ Johnny Sayegh, MD,²¹ Pierre-François Westeel, MD,²² Philippe Zaoui, MD, PhD,²³ Hedia Boivin, PharmD,²⁴ Amélie Le Gouge, MSc,²⁵ and Yvon Lebranchu, MD, PhD,^{1,2,4}

- Acute C4d+ AMR with HLA-DSA within 1st year
- N = 19 (Placebo)
- N = 19 (Rituximab)
- Primary endpoint: treatment failure = composite graft loss or no improvement in Cr (<30% decrease of peak Cr) at Day 12
- Usual Care: Methylpred pulse x 3 days
 PLEX x 6 + low dose IVIG over 12 days
- Rituximab (375 mg/m2) at Day 5 (option for 2 additional doses)

Sautenet et al, Transplantation, 2015

- No difference in SCr improvement at 1 yr ٠
- Only 1 graft loss in each arm ٠
- Trend towards greater DSA reduction at 1 yr with Ritux ٠

Sautenet et al, Transplantation, 2015

Five-Year Outcomes after Randomized Treatment by Rituximab in Early Acute Antibody-Mediated Rejection in Renal Transplantation: Long Term Outcomes of the RITUX ERAH Study

E. Bailly,¹ G. Blancho,² S. Ville,² E. Morelon,³ J. Bamoulid,⁴ S. Caillard,⁵ V. Chatelet,⁶ P. Malvezzi,⁷ J. Tourret,⁸ V. Vuiblet,⁹ D. Anglicheau,¹⁰ D. Bertrand,¹¹ P. Grimbert,¹² F. Haidar,¹³ M. Hazzan,¹⁴ N. Kamar,¹⁵ P. Merville,¹⁶ C. Mousson,¹⁷ V. Pernin,¹⁸ C. Pouteil-Noble,¹⁹ R. Purgus,²⁰ J. Sayegh,²¹ P. Westeel,²² M. Büchler.¹

- 38 patients: 11 placebo vs. 27 Rituximab
- At 5 years after AMR:
 - No difference in DCGF (55% in placebo vs 57% in Ritux)
 - No difference in renal function, proteinuria, incidence of infections and neoplasms
- Overall, no benefit 5 years after AMR of rituximab in addition to PLEX/IVIG/Steroids

AJT 2017

Treatment of chronic antibody mediated rejection with intravenous immunoglobulins and rituximab: A multicenter, prospective, randomized, double-blind clinical trial

```
Francesc Moreso<sup>1</sup> | Marta Crespo<sup>2</sup> | Juan C. Ruiz<sup>3</sup> | Armando Torres<sup>4</sup> |
Alex Gutierrez-Dalmau<sup>5</sup> | Antonio Osuna<sup>6</sup> | Manel Perelló<sup>1</sup> | Julio Pascual<sup>2</sup> |
Irina B. Torres<sup>1</sup> | Dolores Redondo-Pachón<sup>2</sup> | Emilio Rodrigo<sup>3</sup> | Marcos Lopez-Hoyos<sup>7</sup> |
Daniel Seron<sup>1</sup>
```

- Randomized, placebo-controlled trial for chronic AMR (TG + DSA)
- Treatment group: IVIG (0.5 g/kg) x 4 + Rituximab x 1 (375 mg/m2) vs. placebo
- Planned sample size of 50 but only 25 patients randomized (13 treatment, 12 placebo)
- Outcomes:
 - No difference in eGFR decline (primary outcome) or change in proteinuria
 - No difference in Banff scores at 1 year
 - No difference in DSA MFI
- Overall, no benefit of IVIG + Rituximab in patients with chronic AMR (presence of TG)

B Cell Maturation

Novel Therapeutics for AMR

Bortezomib: proteasome inhibitor

Anderson, CCR, 2016

A Randomized Trial of Bortezomib in Late Antibody-Mediated Kidney Transplant Rejection

Farsad Eskandary,¹ Heinz Regele,² Lukas Baumann,³ Gregor Bond,¹ Nicolas Kozakowski,² Markus Wahrmann ⁽¹⁾, ¹ Luis G. Hidalgo,⁴ Helmuth Haslacher,⁵ Christopher C. Kaltenecker,¹ Marie-Bernadette Aretin,⁶ Rainer Oberbauer,¹ Martin Posch,³ Anton Staudenherz,⁷ Ammon Handisurya,¹ Jeff Reeve,⁸ Philip F. Halloran,⁸ and Georg A. Böhmig¹

- Randomized, placebo-controlled trial of bortezomib in late AMR
- Inclusion: > 6m post-Tx, acute or chronic AMR features on biopsy, presence of DSA
- Treatment = 2 cycles of Bortezomib (each cycle 4 IV doses)
- n=21 bortezomib vs. n=23 placebo
- Primary endpoint: eGFR slope

 Overall, bortezomib did not prevent GFR loss, reduce DSA or improve histologic or molecular features despite significant GI and hematologic toxicities

Humoral Compensation after Bortezomib Treatment of Allosensitized Recipients

Jean Kwun,*[†] Christopher Burghuber,^{†‡} Miriam Manook,* Neal Iwakoshi,[†] Adriana Gibby,[†] Jung Joo Hong,[§] and Stuart Knechtle*[†]

JASN 2017

- Compensatory B cell proliferation in germinal center

Complement inhibitors (extinguishing the fire)

Courtesy of Nicole Venezuela

Eculizumab

Positive Crossmatch Kidney Transplant Recipients Treated With Eculizumab: Outcomes Beyond 1 Year

L. D. Cornell¹, C. A. Schinstock², M. J. Gandhi³, W. K. Kremers² and M. D. Stegall^{2,*}

100.00% 90.00% 80.00% 70.00% 60.00% AllEC 50.00% Control 40.00% 30.00% 20.00% 10.00% 0.00% Α 3 months 1 year 2 year

Moderate-to-Severe Peritubular capillaritis in Controls vs. Eculizumab						
	3-4 months	1 year	2 year			
Allec	25.0% (7/28)	60.0% (18/30)	45.4%			
Control	34.1% (14/41)	60.0% (21/35)	60.0% (15/25)			
p-value (control vs. EC)	P=0.59	P=1.00	P=0.39			

AJT, 2015

- Eculizumab did not prevent microcirculatory damage and TG

Transplant Glomerulopathy in Controls vs. Eculizumab							
	3-4 months	1 year	2 year				
AllEC	0% (0/28)	26.7% (8/30)	45.4% (10/22)				
Control	9.3% (4/43)	39.5% (15/38)	63.6% (21/33)				
p-value (EC vs. control)	P=0.15	P=0.31	P=0.27				

C1 INH Cinryze (Shire) • Berinert (CSL Behring) • C4 C3 C5 C1 C4b ····><mark>></mark> C3b C3d C4d C5b MAC

Courtesy of Nicole Venezuela

Ides (IgG-degrading enzyme derived from Streptococcus pyrogenes)

IgG Endopeptidase in Highly Sensitized Patients Undergoing Transplantation

NEJM, 2017

S.C. Jordan, T. Lorant, J. Choi, C. Kjellman, L. Winstedt, M. Bengtsson, X. Zhang, T. Eich, M. Toyoda, B.-M. Eriksson, S. Ge, A. Peng, S. Järnum, K.J. Wood, T. Lundgren, L. Wennberg, L. Bäckman, E. Larsson, R. Villicana, J. Kahwaji, S. Louie, A. Kang, M. Haas, C. Nast, A. Vo, and G. Tufveson

Ides (IgG-degrading enzyme derived from Streptococcus pyrogenes)

- Open-label, phase 1-2, desensitization trial (US, Sweden)
- N=25 highly sensitized patients, cPRA ≥ 95%
- All IgG-DSA eliminated at time of transplantation
- N=10/25 with AMR, 1 patient with hyperacute rejection (non-HLA) *rebound phenomenon*

- 1. Rituximab: does not target plasma cells, incomplete penetration of B cells in lymphoid organs
- 2. Bortezomib: humoral compensation in germinal center
- 3. Complement inhibitors: *non-complement-mediated pathways*
- 4. IdeS: rebound antibody production

All of these medications have significant treatment-related toxicities

When B cells are out of the gate...

- 1. Multidisciplinary approach to target non-adherence
- 2. Optimize immunosuppression
- 3. A better way of matching using epitope?

Sellares, AJT 2012

Modernized tools to address non-adherence

ROGERS 🗢 6:57 PM	23% 💷'	🖬 ROGERS 🗢	6:58 PM	23% 💷 '	III ROGERS 🗢	6:57 PM	23% 🚺
Guest	<u></u> +	Cancel	Add Medicine	Next	Guest		+
CURRENTLY TAKING		MED INFO			Тс	day lap 24	
Mycophenolate (250 mg)	\ \	🚔 Mycoph	e		ĨĊ	uay, Jan 24	
Next reminder: Today, 8:00 PM	1	Mycopheno	late	•	کے۔ Morning	Ó Afternoon	
Tacrolimus (2 mg)	>	Mycophenolate	Mofetil 250mg Capsule	_			
Next reminder: Tomorrow, 8:00) AM	Mycopheno Mycophenolate	late Mofetil 250mg Capsule				
INACTIVE MEDS		Mycophe nol	ate				
Mycophenolate (250 mg)	<u>_</u>	Mycophenolate	Mofetil 250mg Capsule				
Reminders are suspended		Mycophenol Mycophenolate	ate Mofetil 250mg Capsule				
Tacrolimus (1 mg)	>	Myconheno	late			C Night (Jan 2	5)
Reminders are suspended	-	Mycophenolate	Mofetil 250mg Capsule		•		
		q w e	r t y u i	ор			
		a s o	d f g h j	k I			
		☆ z >	x c v b n	m 🗵			
Pill Box Updates Report Med Cabir	ooo net More	123	g space	Done	Pill Box Updates	Report Med Cabinet	o o o More

Wiebe, JASN 2017

Impact of MMF dose reduction on long-term outcomes

Impact of MMF dose reduction on long-term outcomes

Impact of MMF dose reduction on long-term outcomes

	Full Dose MMF	76-99% MMF Dose	51-75% MMF Dose	0-50% MMF Dose
	N=119	N=70	N=92	N=38
Model 1: HR (95% Cl) Unadjusted	1 (referent)	1.17 (0.45-3.08)	2.04 (0.91-4.60)	3.33 (1.35-8.20)
Model 2: HR (95% CI) Adjusted for recipient factors: Age, sex, race, BMI, PRA, cause of ESRD	1 (referent)	1.08 (0.40-2.94)	2.20 (0.96-5.02)	4.08 (1.60-10.38)
Model 3:HR (95% CI) Model 2 and: donor age, repeat transplant, donor type, HLA mismatch, CIT	1 (referent)	0.99 (0.36-2.73)	2.39 (1.00-5.72)	4.04 (1.42-11.47)
Model 4: HR (95% Cl) Model 3 and: CNI use, ATG, prednisone	1 (referent)	0.92 (0.32-2.62)	2.25 (0.89–5.58)	3.28 (1.10-9.76)
Model 5:HR (95% Cl) Model 4 and: DGF	1 (referent)	0.93 (0.32-2.65)	2.25 (0.89-5.69)	3.29 (1.10-9.83)
BMI = body mass index, PRA = panel reactive antibody, ES	SRD = end-stage renal disease, HLA = huma	n leukocyte antigen, CIT = cold ischemic tin	ne, CNI = calcineurin inhibitor, ATG	= antithymocyte globulin, DGF =

Lan, CST 2018

Back to the beginning

Effect of HLA matching over time

1985-1994

1995-2004

Opelz, Transplantation 2007

Epitope analysis: a new way of HLA matching

Epitope analysis: not all mismatches are created equal

Epitope analysis: not all mismatches are created equal

Wiebe, AJT, 2013

Workflow of epitope-based analysis

Patient Name:	x	Donor Name	x	########	Sort by	DRB Eplets	Sort by DQB Eplets	Sort by DQA Eplets	Sort by DPB Eplets
Locus	Patient HLA		Donor HLA	,	mmEp	Mismatched L	Donor Eplets		
DRB1	DRB1*0101		DRB1*0401		11	, , 12 VKH,14HEH	I, ,26RF,32FYH,34HQ, , , , , ,	71QKA, , , ,96YL,98EN,104Ak	(,120N, , , , ,180LT, ,
DRB1	DRB1*0301		DRB1*1101		5	, , , , , ,26RF,32FY	'N, , , ,57DE, ,67FR,71DRA, ,		
DRB345	х	• •	х		-	222			
DRB345	x		x		-	333			
DQB	DQB1*0501		DQB1*0301		14	,14AM, ,26Y,30Y	YA,45EV,46EVY,52PL,55PPF	°,57PD, ,70RT,74EL,77DT, , , ,	, , , , ,140T,167HG,182N, , , ,
DQB	DQB1*0201		DQB1*0301		14	,14AM, ,26Y,30Y	YA,45EV,46EVY,52PL,55PPF	°,57PD, ,70RT,74EL,77DT, , , ,	, , , , ,140T,167HG,182N, , , ,
DQA	x		x		-	222			
DQA	x		x		-				
Suggested 1st DQA?	DQA1*0101		DQA1*0302						
Suggested 2nd DQA?	DQA1*0501		DQA1*0501						

Evidence-based optimization

Era of Precision Medicine

Questions?

James.Lan@vch.ca