

The BC GN Atlas:

A first look at the epidemiology of GN in BC

Objectives

- 1. Describe the data logistics for the BC GN Registry
- 2. The BC GN Atlas: using the GN Registry to describe the epidemiology of GN in BC
- 3. Provide a detailed look at the epidemiology of IgA nephropathy in BC
- 4. Using the GN Registry data for observational research and clinical trials

Prior to 2013: data on GN patients in BC

Data infrastructure linked to funding for health services specific to CKD and ESRD

BC GN Committee

In 2013, BC Renal created the GN Committee

Overarching mandate:

Ensure high-quality GN-related health services are available to patients throughout BC

BC GN Committee: vision

- 1. To coordinate the delivery of GN-specific health care at the provincial level
 - Analogous to existing CKD/ESRD, transplantation strategies
- 2. Capture necessary data to develop and evaluate health services initiatives
 - <u>In real-time</u>
 - <u>Accountability</u>
- Integrate health administration and research activities to create a <u>sustainable</u> framework to study rare diseases across a large population

BC GN Registry

- Goal of the GN Registry:
 - To ensure high quality data is available to develop and evaluate clinical care and health policy initiatives implemented by the BC GN Committee
- Embedded within the existing information system (PROMIS)
- Captures prospective data on all GN patients in BC as of kidney biopsy

BC GN Registry

- Ensure sustainability:
 - Uses existing administrative resources to capture data
 - Integration into processes of care
 - Interfaces with existing information systems

Histologic Diagnoses Enrolled in the BC GN Registry					
Amyloidosis	IgA nephropathy				
Anti-GBM antibody (Goodpasture's) GN	IgM nephropathy				
Autoimmune / Connective tissue disease associated GN	Immunotactoid GN				
Cryoglobulinemic GN	Light chain deposition disease				
C3 GN	Light and heavy chain deposition disease				
C1q nephropathy	Lupus nephritis				
Dense deposit disease	Minimal change disease				
Fibrillary GN	Membranoproliferative GN, IC mediated				
Focal segment glomerulosclerosis	Membranous nephropathy				
GN with monoclonal immunoglobulin deposits	Mesangial proliferative GN				
GN not otherwise specified	Pauci-immune (ANCA) GN				
Heavy chain deposition disease	Post-infectious GN				
Henoch-Schonlein purpura	Thrombotic microangiopathy				

BC GN Registry Clinical Data Capture

- Clinical information:
 - BP, height, weight, comorbidities, medications
- Maximize existing data entry processes that are currently part of usual care:
 - Kidney care clinics
 - Biopsy request form
 - Immunosuppression medications: directly by pharmacy at time of drug dispensing for GN Formulary

Kidney biopsies in BC 2013 – early 2019

Kidney biopsies in BC 2013 – early 2019

Kidney biopsies in BC 2013 – early 2019

(manual)

Kidney biopsies in BC early 2019 - Present

Kidney biopsies in BC early 2019 - Present

BC GN Registry as of March 2019

	BC	PHC/VCHA	FHA	IHA	NHA	VIHA	BCCH
All GN patients	2670	1035	710	342	158	350	75
Minimal change disease	156	60	44	14	6	21	11
FSGS	526	191	144	60	33	91	7
FSGS likely idiopathic	69	24	23	9	4	5	4
Membranous nephropathy	285	95	91	35	20	38	6
ANCA vasculitis	343	110	94	61	21	49	8
IgA nephropathy	501	204	146	55	27	66	3
Lupus nephritis	240	136	38	20	9	17	20
C3 glomerulopathy	25	10	2	3	2	6	2
PGNMID	32	11	7	3	3	8	
Fibrillary/Immunotactoid GN	20	2	4	4	4	6	

BC GN Atlas

Using the GN Registry data to describe the epidemiology of GN in BC

BC GN Atlas

- Reporting period from 2015 to end of 2018
 - To ensure sufficient capture of VIHA patients after 2015
- To assess disease prevalence, compared to historical biopsy data from 2000-2012 from St. Paul's Hospital Pathology Lab
 - Prevalent patients with a first biopsy prior to 2000 and a repeat biopsy in the GN registry erroneously classified as "incident"
 - No historical data available for VIHA -> any patient with a repeat biopsy in the GN registry erroneously classified as "incident"

Number of incident GN patients in BC

Incidence rate of GN in BC

Number of incident GN subtypes in BC

Incident rate of GN subtypes in BC

Incidence rates appear stable over time, and match existing literature

Number of incident GN patients by HA

Incident rate of GN by HA

Low population High incidence rate

Number of prevalent GN patients in BC

Prevalence rate of GN in BC

Number of prevalent GN subtype in BC

Clinical characteristics at biopsy

eGFR at biopsy

Age at biopsy

BC GN Atlas

The epidemiology of IgA nephropathy in BC

Prevalence rate of IgAN in BC

Race/ethnicity in IgAN

Clinical characteristics at biopsy in IgAN

Immunosuppression in IgAN by HA

GN formulary started

Immunosuppression use in IgAN over time

eGFR at biopsy by immunosuppression exposure

IS being used mostly in those with low eGFR

BCKD19 BC KIDNEY DAYS

Immunosuppressive Therapy

eGFR at biopsy in treated patient by HA

Proteinuria at biopsy by immunosuppression exposure

Non-steroid IS being used in those with higher proteinuria

Immunosuppressive Therapy

Proteinuria at biopsy in treated patient by HA

Proteinuria at biopsy in **untreated** patient by HA

BC GN Atlas: Conclusions

- Unique population-level data infrastructure in the GN Registry
 - Amount of data is increasing over time
 - Provide the first overview of the epidemiology of GN in BC
 - Address knowledge gaps: incidence/prevalence of GN, patterns of practice
- Raises interesting questions:
 - Is incidence/prevalence stable or increasing?
 - Geographic locations of high-incidence regions?
 - Are there different patterns of practice vs data capture?

BC GN Atlas: Next Steps

- Edit and refine the figures
- Add outcome data: ESKD, mortality, time from biopsy to IS, locations of clinical care
- Generate an official GN Atlas report for distribution

Annual Statistics on Organ Replacement in Canada

Dialysis, Transplantation and Donation, 2008 to 2017

BC GN Registry

Research applications

clinical investigation

Disease-specific incident glomerulonephritis displays geographic clustering in under-serviced rural areas of British Columbia, Canada

Mark Canney^{1,2}, Dilshani Induruwage², Lawrence C. McCandless³, Heather N. Reich⁴ and Sean J. Barbour^{1,2}

Kidney International, August 2019

- Used historical SPH biopsy data from 2000-2012 to explore geographic clustering of incident GN in BC
 - VIHA excluded due to lack of data
- Bayesian spatial model to adjust for correlation between adjacent regions, and region-level age, sex and race demographics
- Compared incidence rate in each region to overall average incidence in BC

Geographic clusters of GN in BC

MN, IgAN, FSGS, ANCA, clustering not explained by age, sex, race

LN clustering entirely explained by age, sex, race

KI, August 2019

Geographic clusters of GN in BC

Urban vs rural clusters of GN in BC

Variable	MN	IgAN	FSGS	ANCA-GN	LN
Rural clusters ^a					
N (%) of all clusters	6 (75)	0	15 (88)	25 (100)	0
Population density	45.3 (0.9-334.7)	n/a	0.6 (0.1-334.7)	1.2 (0.4-67.9)	n/a
Driving distance	23 (7-130)	n/a	386 (7-950)	154 (10-676)	n/a
Urban clusters					
N (%) of all clusters	2 (25)	8 (100)	2 (12)	0	6 (100)
Population density	1678.5 ^b	4240.9 (1304.3-6714.6)	1678.5 ^b	n/a	5079.7 (1304.3-6714.6)
	4677.2 ^b		4677.2 ^b		
Driving distance	7 ^b	7 (3–15)	7 ^b	n/a	7.5 (3–15)
	7 ^b		7 ^b		

These findings could not have been predicted by age, sex, race demographics from local regions

Argues for mandatory reporting of GN to plan health services delivery

Using the BC GN Registry for clinical trials

- Population-level biopsy results linked to laboratory data
 - Allows screening for eligible patients and targeted recruitment
 - Beneficial for rare diseases in which clinic-based recruitment is not effective

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy

F.C. Fervenza, G.B. Appel, S.J. Barbour, B.H. Rovin, R.A. Lafayette, N. Aslam, J.A. Jefferson, P.E. Gipson, D.V. Rizk, J.R. Sedor, J.F. Simon, E.T. McCarthy, P. Brenchley, S. Sethi, C. Avila-Casado, H. Beanlands, J.C. Lieske, D. Philibert, T. Li, L.F. Thomas, D.F. Green, L.A. Juncos, L. Beara-Lasic, S.S. Blumenthal, A.N. Sussman, S.B. Erickson, M. Hladunewich, P.A. Canetta, L.A. Hebert, N. Leung, J. Radhakrishnan, H.N. Reich, S.V. Parikh, D.S. Gipson, D.K. Lee, B.R. da Costa, P. Jüni, and D.C. Cattran, for the MENTOR Investigators

NEJM, July 2019

JAMA | Original Investigation

Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy The TESTING Randomized Clinical Trial

Jicheng Lv, MD; Hong Zhang, PhD; Muh Geot Wong, PhD; Meg J. Jardine, PhD; Michelle Hladunewich, MD; Vivek Jha, MD; Helen Monaghan, PhD; Minghui Zhao, MD; Sean Barbour, MD; Heather Reich, MD; Daniel Cattran, MD; Richard Glassock, MD; Adeera Levin, FRCPC; David Wheeler, FRCP, Mark Woodward, PhD; Laurent Billot, MSc; Tak Mao Chan, MD; Zhi-Hong Liu, MD; David W. Johnson, MD; Alan Cass, FRACP; John Feehally, MD; Jirgen Floege, MD; Gluseppe RemuzzJ, MD; Yangfeng Wu, MD; Rajiv Agarwal, MD; Hal-Yan Wang, MD; Vlado Perkovic, PhD; for the TESTING Study Group

JAMA, August 2017

TESTING-2 low dose: N=10 out of 24 Canadian patients

N=12 out of 130 patients

New therapeutic approaches in IgAN

Current clinical trials in BC

Novel therapeutic targets in IgAN

Kidney Health Initiative and FDA, CJASN 2019

Nefecon: targeted release budesonide

- Proprietary capsule targets release at Peyer's patches in ileum
- Affects local immunity in gut mucosa thought be related to production of Gd-IgA1
- High first-pass metabolism theoretically limits systemic corticosteroid toxicity

NEFIGAN phase 2 trial

European double blind RCT

- N=149, IgAN, eGFR>45, proteinuria >0.75g/d after RASB
- Randomized to:
 - Targeted release budesonide 16mg/d or 8mg/d x 9 months
 - Placebo
- Systemic exposure similar to prednisone 8mg/day

NeflgArd Phase 3 trial

- Inclusion criteria:
 - IgAN on biopsy within <u>10 years</u>
 - On maximum RASB with BP control
 - Proteinuria \geq 1g/day and <u>eGFR \geq 35mL/min/1.73m²</u>, on max RASB
- Prior steroids/immunosuppression acceptable
- Randomized to:
 - Targeted release budesonide 16mg/day x 9 months
 - Placebo
- Primary outcome: 9-month proteinuria, and eGFR decline over 6 years

OMS721: monoclonal Ab to MASP-2

- Inhibits MASP-2, which is major effector enzyme of lectin pathway
 - MBL recognized galactose deficient hinge region in Gd-IgA1
 - MBL \rightarrow MASP-2 \rightarrow activates C3 convertase (C4bC2a)
 - Ab to MASP-2 selectively inhibits lectin pathway
 - Strong translational data suggests the lectin pathway drives disease activity in IgAN
- No risk of meningococcal infections
- Has been given to health volunteers, TMA patients, and C3G patients with few side effects

ARTEMIS-IGAN Phase 3 trial

- Inclusion criteria:
 - IgAN on biopsy within <u>10 years</u>
 - Proteinuria \geq 1g/day and eGFR \geq 30mL/min/1.73m², on max RASB
- Prior steroids and immunosuppression acceptable
- Randomized to:
 - OMS721 370mg IV weekly x 12 weeks, with repeat dosing based on proteinuria response/relapse for up to 3 years
 - Placebo, dosed similarly
- Primary outcome: 6-month proteinuria, and eGFR reduction over 3 years

Cemdisiran: C5 gene knockdown

- siRNA targeted to hepatocytes
- siRNA: interferes with mRNA translation of C5 protein
- C5 produced exclusively in hepatocytes
- Administered SC
- C5 knockdown inhibits terminal C5b-9 formation
 - Inhibits both alternate and lectin pathways
 - Both implicated in disease activity in IgAN

Cemdisiran: C5 gene knockdown

Sustained suppression of C5 levels for up to 120 days after a single dose

Presumed risk of meningococcal infection similar to eculizumab

Been given to healthy volunteers with no serious AEs

Cemdisiran in IgAN Phase 2 trial

- Inclusion criteria:
 - IgAN on biopsy within <u>5 years</u>, with microscopic hematuria ≥10 RBC/hpf
 - Proteinuria \geq 1g/day and <u>eGFR \geq 30mL/min/1.73m²</u>, on max RASB
 - Willing to receive meningococcal vaccine
- Prior steroids and immunosuppression acceptable
- Randomized to cemdisiran 600mg SC monthly x 8 months vs placebo
 - Followed by open-label cemdisiran x 1 year for all patients
- Primary outcome 8-month proteinuria, phase 2 trial not for drug approval
Summary of clinical trials in IgAN

- Exciting time for drug development in IgAN
 - Target specific pathways of disease pathogenesis
- Clinical trials offer patients:
 - Access to novel treatments
 - Treatment for those previously treated with immunosuppression, or who aren't suitable for corticosteroids
- All are *industry sponsored trials*
 - No financial arrangement with any of the companies

Summary of clinical trials in IgAN

- Use the BC GN Registry to screen for potentially eligible patients
 - Information letter will be sent to nephrologists
 - Consider referring interested patients to the GN Clinic
 - Discuss different trial options
 - Protocol intensity may determine geographic feasibility
- Recruitment strategy successful in previous clinical trials, leverages unique BC resources:
 - Population-level data capture in the GN Registry
 - Small, collaborative nephrology community

Funding:

- Michael Smith Foundation for Heath Research
- Canadian Institutes of Health Research
- BC Renal
- Kidney Foundation of Canada

Statistical and data analysis:

- Sophia Zheng
- Lee Er
- Brian Savage
- Dilshani Induruwage
- Ognjenka Djurdjev

PROMIS data team:

Support BC GN Registry and GN Atlas

BC renal pathologists

- Susanna McRae
- Mei Lin Bissonnettee
- Maziar Riazy

GN Committee

- Committee members
- Yuriy Melnyk (project support)
- Brenda Lee (admin support)

UBC nephrology research team

- Katy Vela
- Pamela Dudas
- Zainab Sheriff
- Bader Al-Zeer
- Mark Canney

