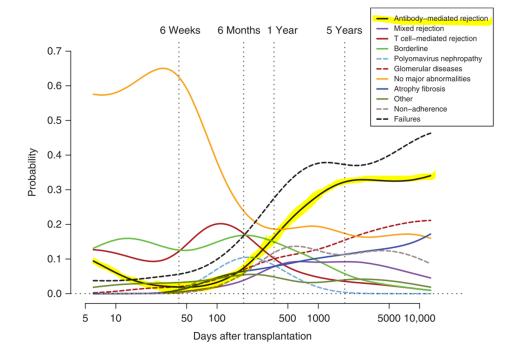


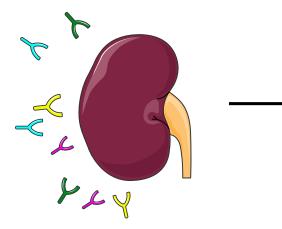
HLA Eplet Frequencies Reduce Genetic Complexity and Provide a Foundation for a National Eplet-Matching Program


Learning Objectives

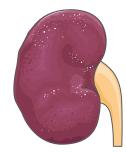
1. To define the role of HLA eplet-matching in kidney transplantation

2. To describe HLA allele and eplet frequencies in kidney patient and donor populations in BC

Kidney Transplantation and Antibody-Mediated Rejection (AMR)



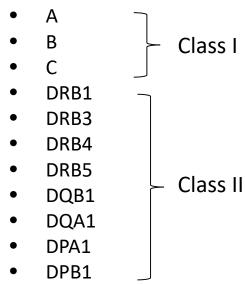
BCKD19 BC KIDNEY DAYS

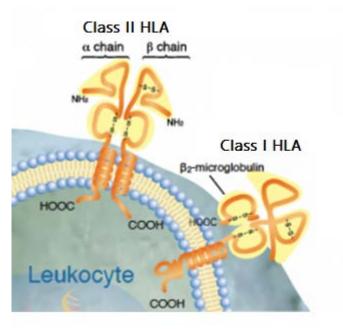

Tonelli M. *et al. Am. J. Transplant.* **11** 2093–2109 (2011). Sellarés J. *et al. Am. J. Transplant.* **12** 388–399 (2012).

AMR

• The recipient's immune system makes antibodies targeted against foreign proteins expressed on the donated kidney

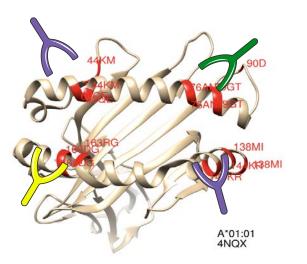
- Complement pathway
- Inflammatory
 response
- Activation of macrophages and NK cells


Graft rejection


• These proteins are the human leukocyte antigens (HLA)

Human Leukocyte Antigens (HLA)

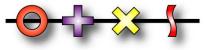
- Essential for the adaptive immune system to respond to foreign molecules
- 11 clinically relevant HLA genes on chromosome 6:



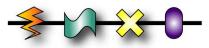
HLA Eplets

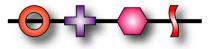
- Antibodies bind to sections of amino acids on the surface of the protein
- **Eplets** are clusters of 2 5 polymorphic amino acids that are essential to antibody binding

Top-down view of an HLA molecule with eplets highlighted in red



HLA Eplet-matching


- Eplet-matching: matching patients and donors by their HLA eplets
- The recipient's immune system will not mount a response against eplets shared between the recipient and donor


Donor A: 4 eplet mismatches

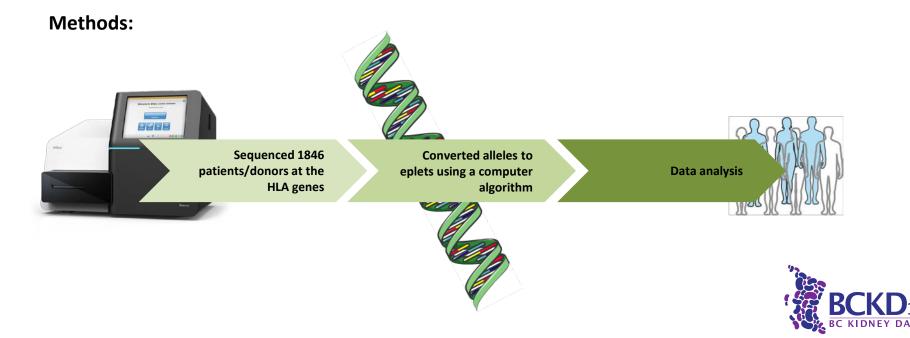
Patient HLA

Donor B: 3 eplet mismatches

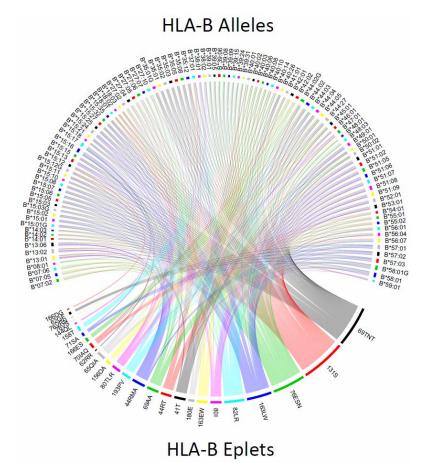
Donor C: 1 eplet mismatch

Modified from Kramer, C. S. M. et al. Transpl. Int. 32, 16-24 (2019).

Eplet-Matching in Kidney Transplantation


- Multiple studies have shown matching by eplets result in decreased risk of de novo donor-specific antibodies, transplant glomerulopathy, rejection, and graft loss
- Importantly, there are far fewer documented HLA eplets than alleles

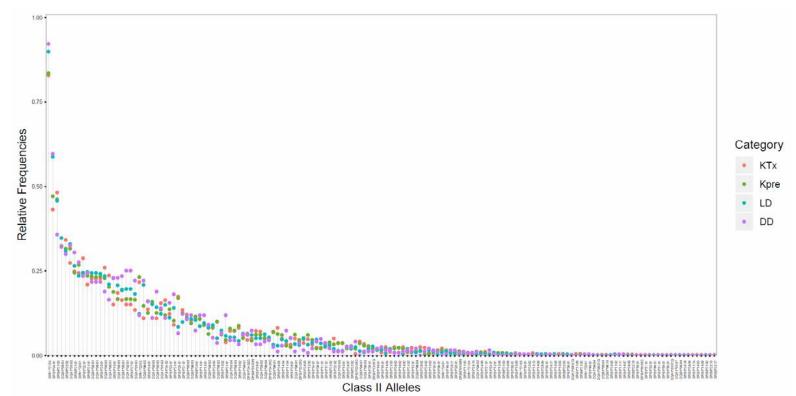
Nevins, T. E. et al. *J. Am. Soc. Nephrol. 28, 3353–3362 (2017).* Wiebe, C. et al. *Am. J. Transplant. 13, 3114–3122 (2013).* Wiebe, C. *et al. Am. J. Transplant.* 19, 1708–1719 (2019). Sapir-Pichhadze, R. *et al. Am. J. Transplant.* (2015).



Research Design

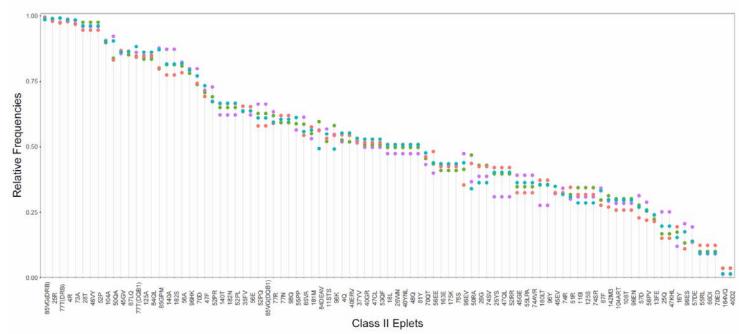
Aim: To describe HLA allele and eplet frequencies in kidney patient and donor groups in BC and compare the likelihood of matching by each method.

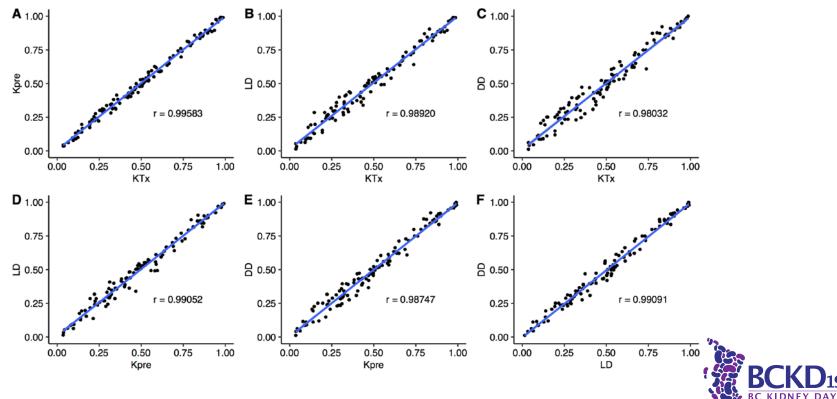
Conversion from Alleles to Eplets Reduce HLA Complexity



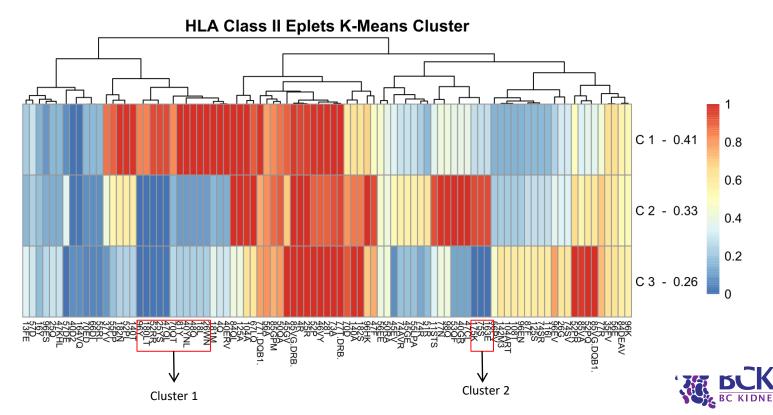
Conversion from Alleles to Eplets Reduce HLA Complexity

- 361 alleles converted into 150 eplets, resulting in a 59% reduction in genetic complexity
- Class I alleles encoded 0 11 eplets
- Class II alleles encoded 0 17 eplets


HLA Allele Frequencies


HLA Eplet Frequencies

Category • KTx • Kpre • LD • DD



Eplet Frequencies Compared Between Patient and Donor Groups

Clustering Patients and Donors by their Eplet Expression Patterns (Epitypes)

Conclusions

- Eplets reduce the HLA complexity in a BC study sample
- Patients and donors show similar eplet frequencies
- The study sample grouped into 3 clusters expressing similar eplet profiles, called epitypes
- Overall, the results support the feasibility of eplet-matching in BC in efforts to improve long term transplant outcomes

Acknowledgements

GCTC GENOME CANADA TRANSPLANT CONSORTIUM

Immunology Laboratory at VGH

- Dr. Paul Keown
- Dr. Franz Fenninger
- Dr. Oliver Gunther
- Dr. James Lan
- Dr. Karen Sherwood
- Sabina Dobrer
- Dr. Lenka Allan
- Dr. Vikramjit Chopra
- Clinical Staff

Genome Canada Transplant Consortium

- Dr. Ruth Sapir-Pichhadze
- Dr. Rene Duquesnoy
- Dr. Frans Claas

References

1. Tonelli, M. *et al.* Systematic review: Kidney transplantation compared with dialysis in clinically relevant outcomes. *Am. J. Transplant.* **11**, 2093–2109 (2011).

2. Sellarés, J. *et al.* Understanding the causes of kidney transplant failure: The dominant role of antibody-mediated rejection and nonadherence. *Am. J. Transplant.* **12**, 388–399 (2012).

3. Dankers, M. K. A. *et al.* The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens. *Transplantation* **77**, 1236–1239 (2004).

4. Williams, R. C., Opelz, G., McGarvey, C. J., Weil, E. J. & Chakkera, H. A. The risk of transplant failure with hla mismatch in first adult kidney allografts from deceased donors. *Transplantation* **100**, 1094–1102 (2016).

5. Duquesnoy, R. J. HLA epitope based matching for transplantation. *Transpl. Immunol.* **31**, 1–6 (2014).

6. Kramer, C. S. M. *et al.* The long and winding road towards epitope matching in clinical transplantation. *Transpl. Int.* **32**, 16–24 (2019).

7. Nevins, T. E. *et al.* Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to Prevent Donor-Specific Antibody Development. *J. Am. Soc. Nephrol.* **28**, 3353–3362 (2017).

8. Wiebe, C. *et al.* Class II HLA epitope matching - A strategy to minimize de novo donor-specific antibody development and improve outcomes. *Am. J. Transplant.* **13**, 3114–3122 (2013).

9. Wiebe, C. *et al.* HLA-DR/DQ molecular mismatch: A prognostic biomarker for primary alloimmunity. *Am. J. Transplant.* **19**, 1708–1719 (2019).

10. Sapir-Pichhadze, R. *et al.* HLA-DR and -DQ eplet mismatches and transplant glomerulopathy: A nested case-control study. *Am. J. Transplant.* (2015). doi:10.1111/ajt.12968

