Please indicate how much you agree or disagree with each of the following statements:

- 1. Fat people are less physically attractive than thin
- 2 I would never date a fat
- 3. On average, fat people are lazier than thin people
- 4. Fat people only have themselves to blame for their weight
- 5. It is disgusting when a fat person wears a bathing suit at the beach

Do you think that stereotypes about obese persons could affect the way that they are treated by health care professionals? If yes, in what ways do you think their care may be compromised? If no, why not?

Ending the Blame Game: A Physiologic Approach to Treating Obesity

JESSE BITTMAN MD FRCPC ABIM

Disclosures

Speaker fees from Novo Nortis and Bausch

I practice in obesity and hypertension clinics

Acknowledgment

I would like to thank Dr. Zentner for help preparing slides and her mentorship

My patients, from whom I learn every day

Objectives

Review the relevance of obesity to kidney disease

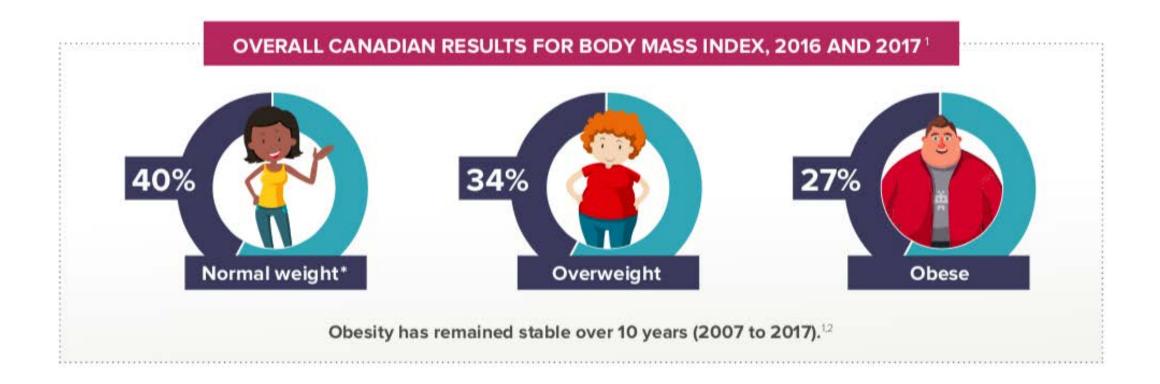
Review the pathophysiology of obesity

Review evidence based strategies for obesity treatment

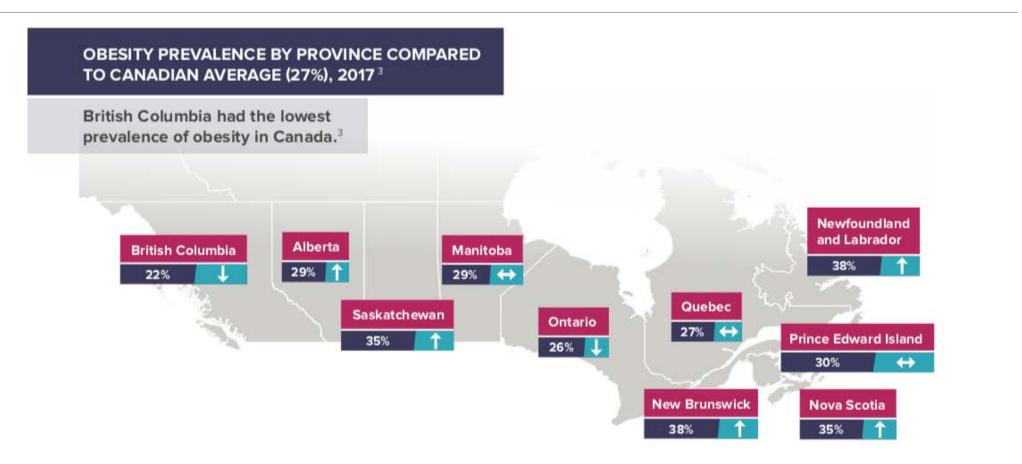
NOTE: this presentation will focus on patients with CKD not on dialysis

But First, A Story

40 y/o M,

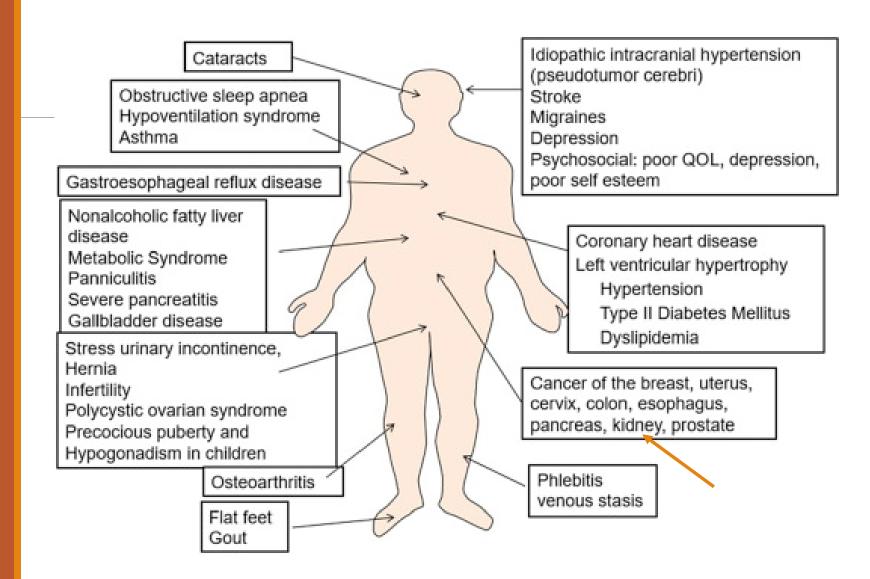

On Medicine ward, after ICU admission for Sepsis, AKI requiring dialysis.

Now kidneys recovered, eGFR 50.

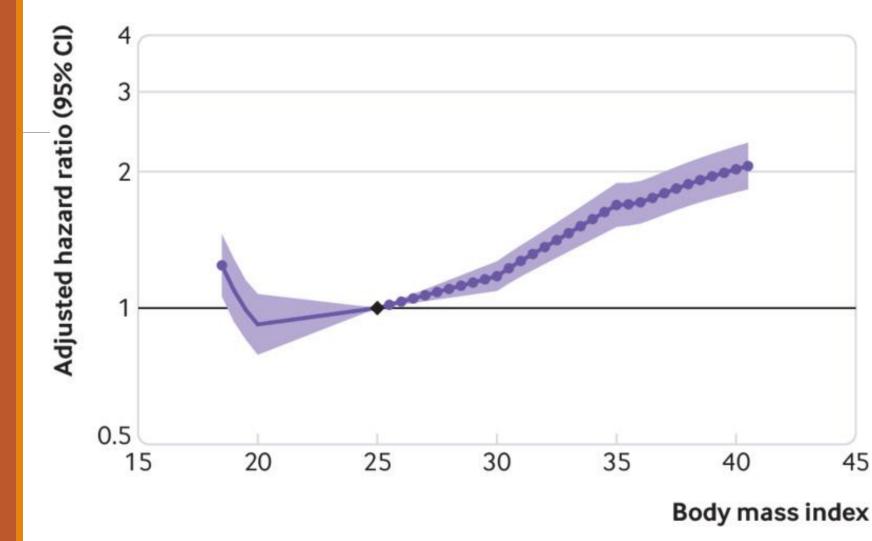

BMI 65, diabetes, hypertension, OSA

He tells me he is a dieting expert, he has lost hundreds of pounds...

Did his weight contribute to renal deterioration and now what, if anything, can I do...



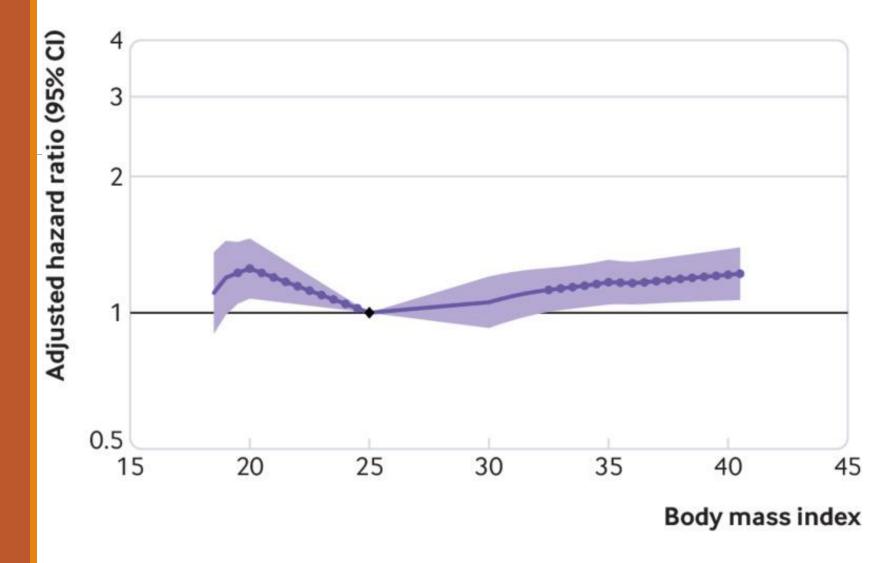
Adapted from Statistics Canada, Obesity in Canadian Adults, 2016 and 2017, October 24, 2018.


Adapted from Statistics Canada, Obesity in Canadian Adults, 2016 and 2017, October 24, 2018.

Comorbidities associated with obesity.

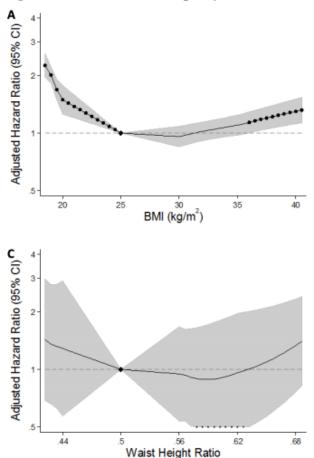
BMI and risk of decline in GFR --General Populations

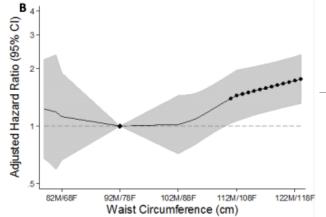
Association between body mass index and risk of decline in glomerular filtration rate in general population cohorts, as shown by meta-analysed hazard ratios and 95% confidence intervals related to body mass index



BMI and risk of decline in GFR --CKD cohorts

Association of body mass index with risk of decline in glomerular filtration rate in cohorts with chronic kidney disease, as shown by meta-analysed hazard ratios and 95% confidence interval related to body mass index, modelled by linear splines with knots at body mass indices 20, 25, 30, and 35.

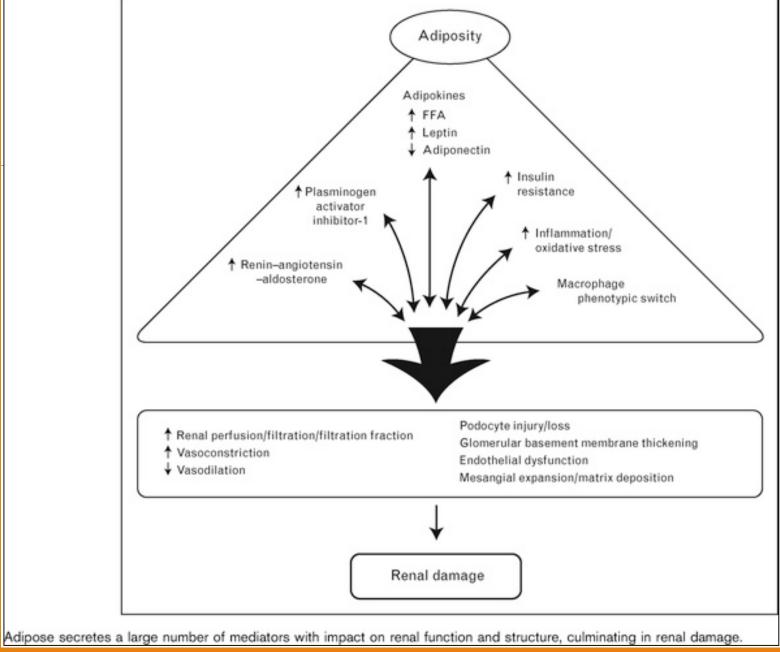


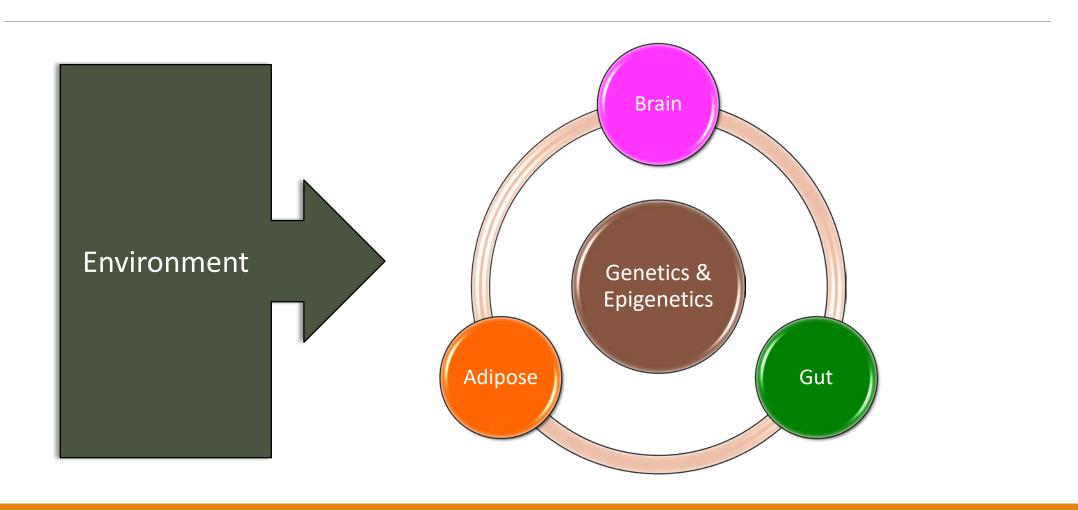


BMI and risk of Mortality --CKD cohorts

eFigure 13. Association of Adiposity Measures with All-Cause Mortality in CKD Cohorts

A 4-




Mechanisms of Obesity-Related Renal Disease

OvidSP

Pathophysiology of Obesity

The Hungry Brain Striatum Substantia Nigra Prefrontal Ventral Tegmental Area Cortex Nucleus Accumbens Amygdala Hypothalamic Hunger System^{1,2} **Hypothalamus** Mesolimbic Reward System³ Primarily driven by POMC neurons Center of the brain that mediates within the hypothalamus

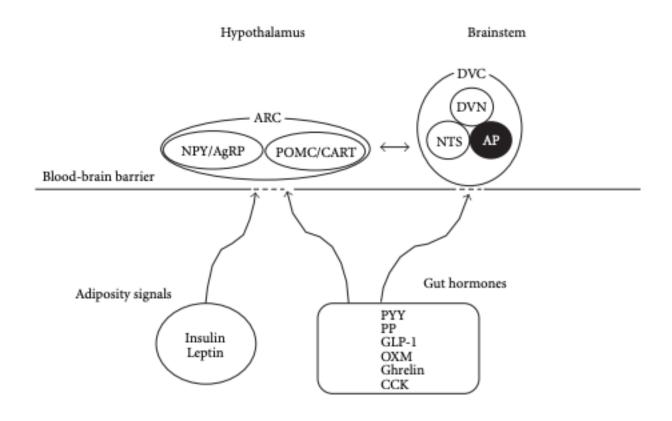
Detection and integration of energy state information (e.g., hunger, fullness) based on peripheral signals

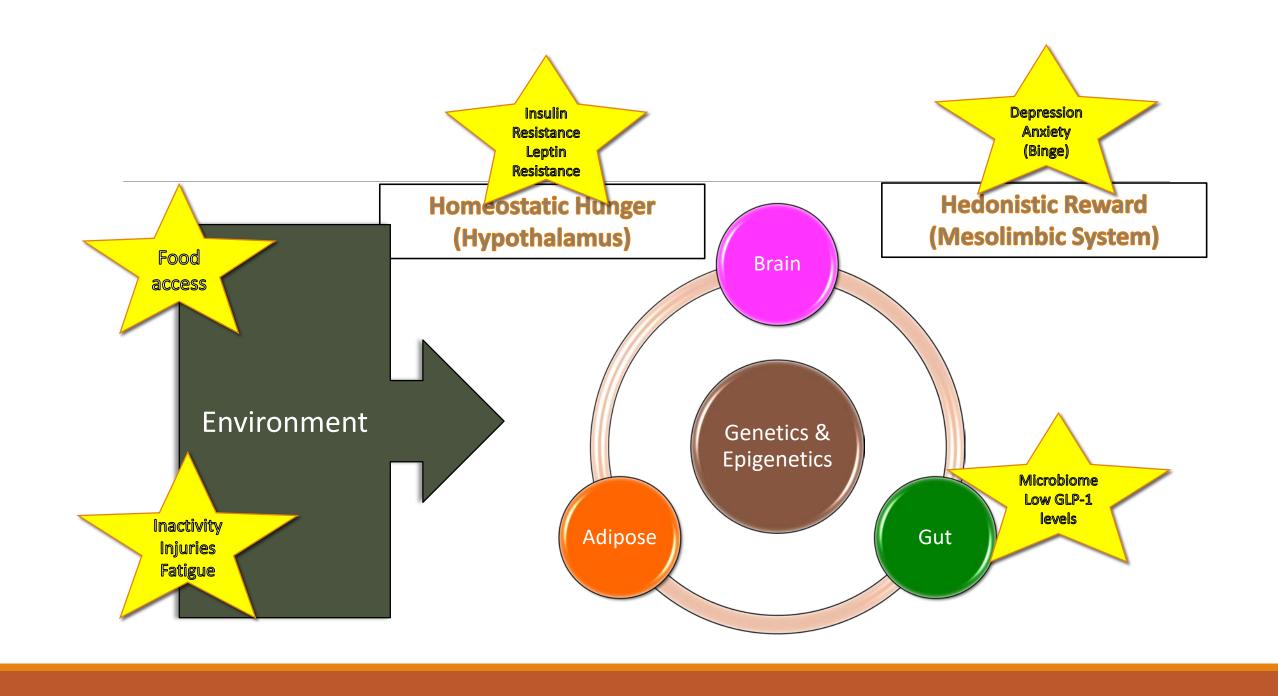
Altered function in obesity (e.g., leptin resistance)

motivation, reward, and desire associated with activities needed for survival

> **Dopamine** and opioid signaling known to play important roles

Mesolimbic Reward System can typically override the Hypothalamic Hunger System,


Bidirectional


Interaction to Control

Food Intake

increasing the consumption of highly palatable foods⁴

Gut Brain Interaction

Treatment: Just Go On A Diet

Put the fork down

Use some will power

Media Messaging

Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults: A Meta-analysis

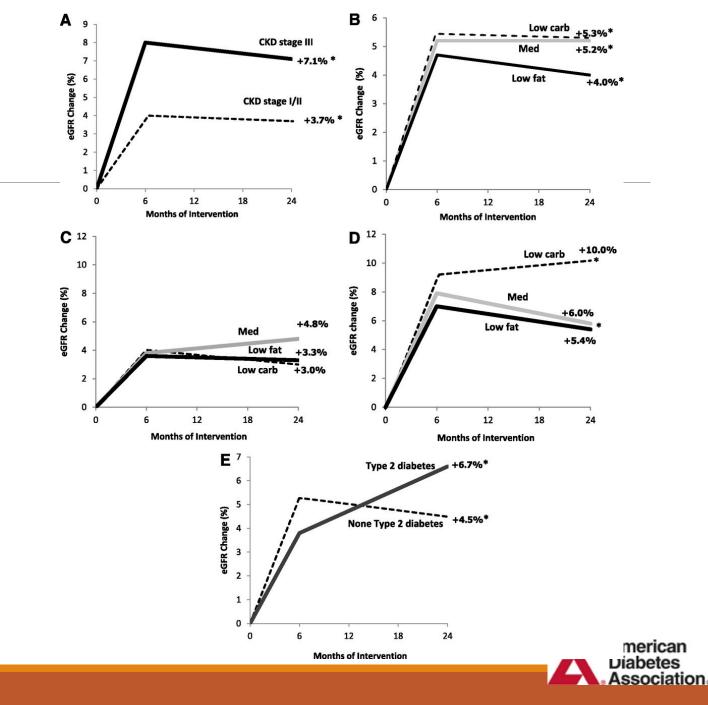
		12-mo Weight Loss, kg												
	No diet	4.10 (1.30 to 6.91)	4.51 (2.37 to 6.73	7.19 (3.83 to 10.63)	6.35 (3.88 to 8.89)	5.95 (3.23 to 8.72)	5.90 (3.88 to 8.05)	6.55 (3.42 to 9.79)	6.42 (3.04 to 9.70)	5.98 (0.63 to 11.46)	6.47 (3.56 to 9.45)	NA	NA	4.15 (0.36 to 8.05)
6-mo Weight Loss, kg	6.02 (4.20 to 7.81)	LEARN	0.41 (-1.98 to 2.82)	3.08 (-0.52 to 6.76)	2.27 (-0.22 to 4.77)	1.85 (-0.97 to 4.65)	1.79 (-1.02 to 4.70)	2.45 (-0.63 to 5.59)	2.34 (-2.07 to 6.59)	1.88 (-3.62 to 7.43)	2.36 (-1.24 to 6.00)	NA	NA	0.05 (-4.14 to 4.30)
	7.67 (5.79 to 9.56)	1.65 (0 to 3.34)	Moderate macronutrient	2.69 (-0.73 to 6.10)	1.86 (0.29 to 3.40)	1.45 (-0.75 to 3.61)	1.40 (-0.54 to 3.37)	2.04 (-0.55 to 4.69)	1.92 (-2.20 to 5.87)	1.48 (-3.45 to 6.40)	1.96 (-0.98 to 4.87)	NA	NA	-0.36 (-4.06 to 3.39)
	8.26 (5.87 to 10.66)	2.25 (-0.18 to 4.72)	0.59 (-1.75 to 2.95)	Low fat	-0.83 (-4.46 to 2.75)	-1.23 (-4.56 to 1.97)	-1.28 (-4.84 to 2.31)	-0.64 (-4.58 to 3.31)	-0.77 (-5.72 to 3.93)	-1.20 (-7.27 to 4.80)	-0.71 (-4.88 to 3.41)	NA	NA	-3.02 (-7.93 to 1.87)
	10.14 (8.19 to 12.12)	4.13 2.40 to 5.88)	2.48 (1.55 to 3.44)	1.88 (-0.55 to 4.34)	Atkins	-0.42 (-2.79 to 1.96)	-0.45 (-2.74 to 1.90)	0.19 (-2.50 to 2.91)	0.07 (-4.25 to 4.19)	-0.37 (-5.54 to 4.82)	0.11 (-3.05 to 3.25)	NA	NA	-2.22 (-6.17 to 1.79)
	8.44 (6.42 to 10.44)	2.42 (0.60 to 4.26)	0.77 (-0.39 to 1.92)	0.17 (-2.05 to 2.36)	-1.71 (-3.09 to -0.35)	Zone	-0.05 (-2.66 to 2.62)	0.60 (-2.25 to 3.46)	0.48 (-3.93 to 4.73)	0.04 (-5.32 to 5.42)	0.52 (-2.93 to 3.97)	NA	NA	-1.80 (-5.98 to 2.46)
	7.26 (5.25 to 9.27)	1.24 (-1.08 to 3.58)	-0.41 (-2.35 to 1.54)	-0.99 (-3.69 to 1.63)	-2.88 (-4.94 to -0.88)	-1.17 (-3.27 to 0.90)	Weight Watchers	0.65 (-2.37 to 3.61)	0.52 (-3.50 to 4.31)	0.08 (-5.29 to 5.39)	0.57 (-2.41 to 3.44)	NA	NA	-1.75 (-5.52 to 1.96)
	9.03 (6.44 to 11.66)	3.02 (0.62 to 5.45)	1.36 (-0.72 to 3.43)	0.77 (-2.18 to 3.67)	-1.12 (-3.24 to 1.00)	0.59 (-1.58 to 2.75)	1.77 (-0.84 to 4.40)	Ornish	-0.12 (-4.86 to 4.40)	-0.57 (-6.19 to 5.05)	-0.08 (-3.88 to 3.64)	NA	NA	-2.39 (-6.88 to 2.05)
6-mo W	5.78 (3.29 to 8.29)	-0.23 (-3.26 to 2.81)	-1.89 (-4.99 to 1.22)	-2.49 (-5.93 to 0.95)	-4.36 (-7.53 to -1.22)	-2.66 (-5.79 to 0.52)	-1.48 (-4.65 to 1.67)	-3.25 (-6.85 to 0.32)	Jenny Craig	-0.44 (-6.76 to 6.06)	0.05 (-4.35 to 4.53)	NA	NA	-2.26 (-7.20 to 2.86)
	9.87 (5.54 to 14.23)	3.86 (-0.37 to 8.11)	2.20 (-1.71 to 6.11)	1.62 (-2.95 to 6.16)	-0.28 (-4.30 to 3.74)	1.44 (-2.63 to 5.51)	2.61 (-1.76 to 6.98)	0.84 (-3.59 to 5.31)	4.09 (-0.89 to 9.11)	Volumetrics	0.49 (-5.31 to 6.20)	NA	NA	-1.82 (-8.08 to 4.32)
	6.56 (2.75 to 10.29)	0.54 (-3.51 to 4.55)	-1.13 (-5.09 to 2.77)	-1.72 (-5.98 to 2.48)	-3.60 (-7.54 to 0.29)	-1.90 (-5.89 to 2.08)	-0.70 (-4.53 to 3.02)	-2.50 (-6.83 to 1.80)	0.76 (-3.69 to 5.17)	-3.33 (-8.87 to 2.14)	Rosemary Conley	NA	NA	-2.32 (-6.44 to 1.87)
	5.43 (1.50 to 9.31)	-0.58 (-4.42 to 3.23)	-2.23 (-6.22 to 1.69)	-2.84 (-7.49 to 1.73)	-4.71 (-8.70 to -0.78)	-3.00 (-7.10 to 1.05)	-1.82 (-6.27 to 2.59)	-3.58 (-8.03 to 0.80)	-0.35 (-4.89 to 4.16)	-4.42 (-10.04 to 1.14)	-1.13 (-6.40 to 4.24)	Biggest Loser	NA	NA
	7.41 (4.63 to 10.18)	1.40 (-1.66 to 4.43)	-0.26 (-3.39 to 2.85)	-0.85 (-4.58 to 2.83)	-2.74 (-5.90 to 0.41)	-1.03 (-4.27 to 2.24)	0.15 (-3.38 to 3.65)	-1.62 (-5.27 to 2.03)	1.62 (-2.12 to 5.38)	-2.45 (-7.53 to 2.53)	0.86 (-3.98 to 5.72)	1.97 (-2.18 to 6.19)	Nutrisystem	NA
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Slimming World

Comparison of Weight Loss Among Named Diet Programs in Overweight and Obese Adults: A Meta-analysis

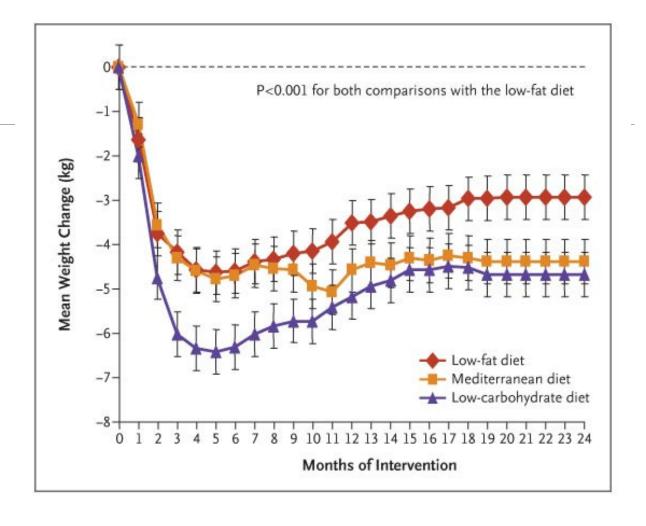
		12-mo Weight Loss, kg						
	No diet (6 mo: 0; 12 mo: 0) ^a	5.16 (2.68 to 7.63)	5.70 (4.14 to 7.35)	7.25 (5.33 to 9.25)	7.27 (5.26 to 9.34)			
, kg	6.07 (4.23 to 7.84)	LEARN 0.55 (6 mo: 0; 12 mo: 0.02) ^a (-1.71 to 2.87)		2.10 (-0.20 to 4.47)	2.12 (-0.33 to 4.59)			
6-mo Weight Loss,	6.78 (5.50 to 8.05)	0.71 (-0.97 to 2.44)	Moderate macronutrients (6 mo: 0; 12 mo: 0) ^a	1.55 (0.13 to 2.95)	1.56 (-0.17 to 3.30)			
	8.73 (7.27 to 10.20)	2.66 (0.93 to 4.44)	1.95 (1.13 to 2.79)	Low carbohydrate (6 mo: 0.83; 12 mo: 0.48) ^a	0.02 (-1.78 to 1.79)			
	7.99 (6.01 to 9.92)	1.92 (-0.19 to 4.06)	1.20 (-0.42 to 2.79)	-0.74 (-2.31 to 0.78)	Low fat (6 mo: 0.17; 12 mo: 0.50) ^a			

Diets in CKD

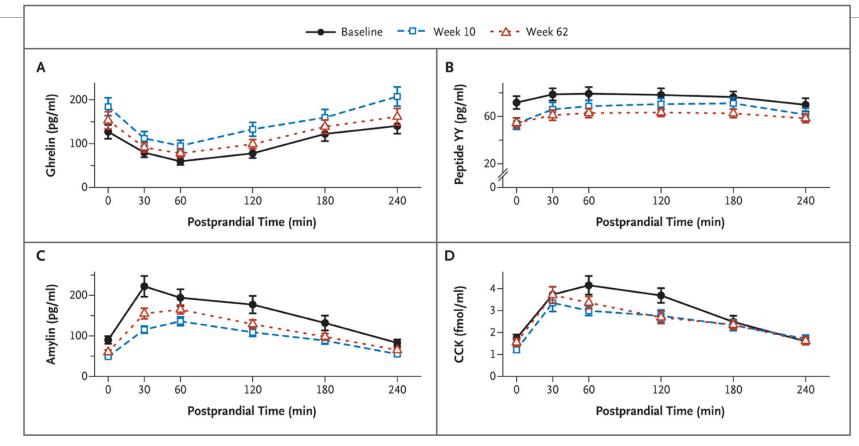
KDIGO 2012


3.1.13: We suggest lowering protein intake to 0.8 g/kg/day in adults with diabetes (2C) or without diabetes

(2B) and GFR o30 ml/min/ 1.73 m2 (GFR categories G4-G5), with appropriate education. 3.1.14: We suggest avoiding high protein intake (41.3 g/kg/day) in adults with CKD at risk of progression. (2C)


2 Year Change in eGFR with diet change

- A. Change in eGFR by baseline CKD stage
- B. Change in eGFR by diet all eGFR
- C. Change in eGFR by diet, baseline eGFR>60.
- D. Change in eGFR by diet type baseline eGFR <60
- E. Change in eGFR by T2DM status


Amir Tirosh et al. Dia Care 2013;36:2225-2232

Weight Changes during 2 Years According to Diet Group.

Long-Term Persistence of Hormonal Adaptations to Weight Loss

Treatment: Diets

Diet alone, across multiple studies: 5-8Kg (11-17lb)

I wouldn't use DASH Diet alone for BP 200/120

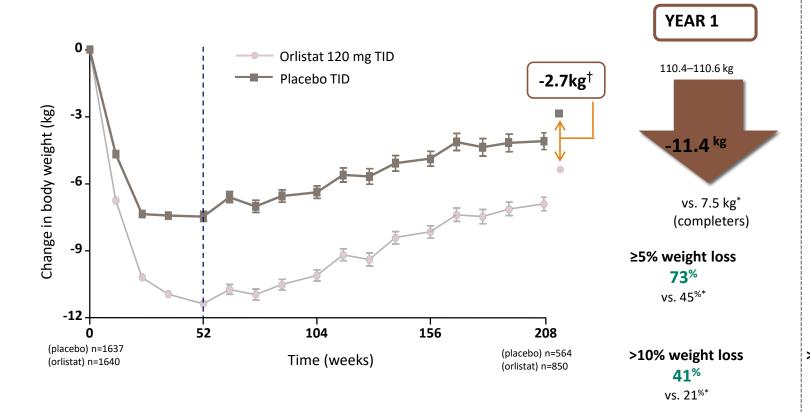
I wouldn't use Profile diet alone for LDL 5

AND I would explain my disagreement if that is the treatment they wanted!

Drugs for Long-Term Weight Management

Drug (trade name)	Health Canada Approval	Mechanism of Action	1-year weigth loss, placebo-substracted	Major Safety Issues	Tolerability
Orlistat (Xenical)	1999	Gastrointestinal lipase inhibitor	~3%	Fat-soluble vitamin malabsorption	Fecal urgency, fecal incontinence, flatus with discharge, oily spotting
Liraglutide (Saxenda)	2015	GLP-1 receptor agonist	4.0-5.4%	Gallstones, acute pancreatitis	Nausea, vomiting, diarrhea, constipation, dyspepsia, abdominal pain, headache, fatigue, hypoglycemia, increased lipase
Naltrexone hydrochloride/Bupro pion hydrochloride (Contrave)	2018	Opioid receptor antagonist / aminoketone antidepressant	3.3-4.8%	Use in controlled hypertension only	Nausea, vomiting, constipation, diarrhea, dizziness, dry mouth

Orlistat


Selective Lipase inhibitor

Prevents digestion and absorption of fat in the duodenum

20% reduction in calories

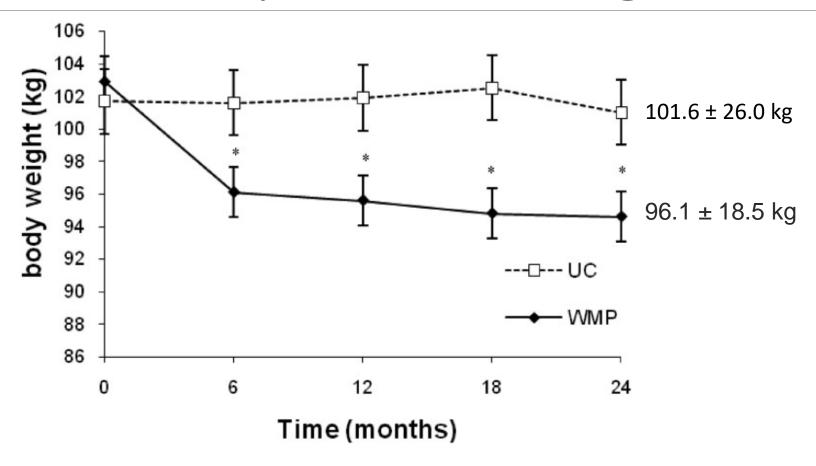
Orlistat XENDOS trial

ORLISTAT TID^{1,2}

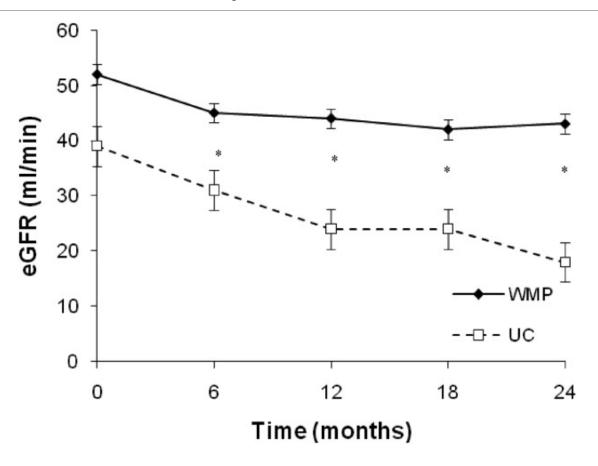
YEAR 4

vs. -4.1 kg* (completers)

≥5% weight loss


44.8% vs. 28.0%*

>10% weight loss


21%

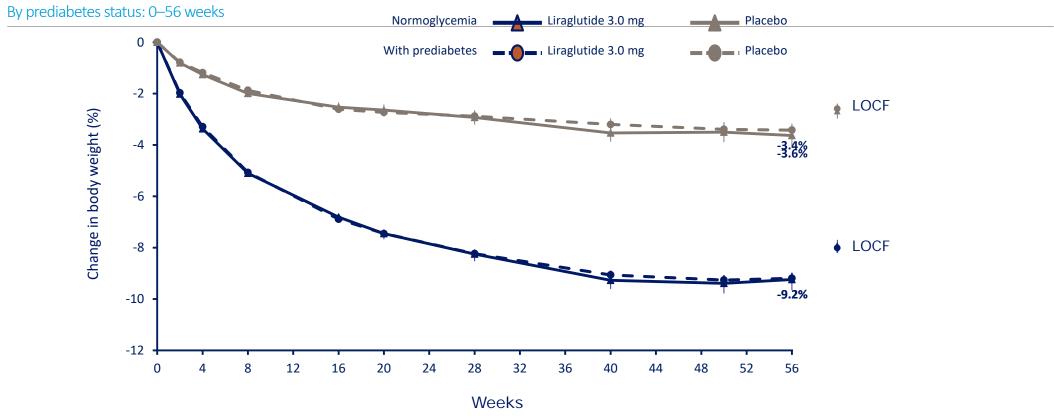
vs. 10^{%*}

Orlistat and Kidney Disease: Weight

Orlistat and Kidney Disease: eGFR

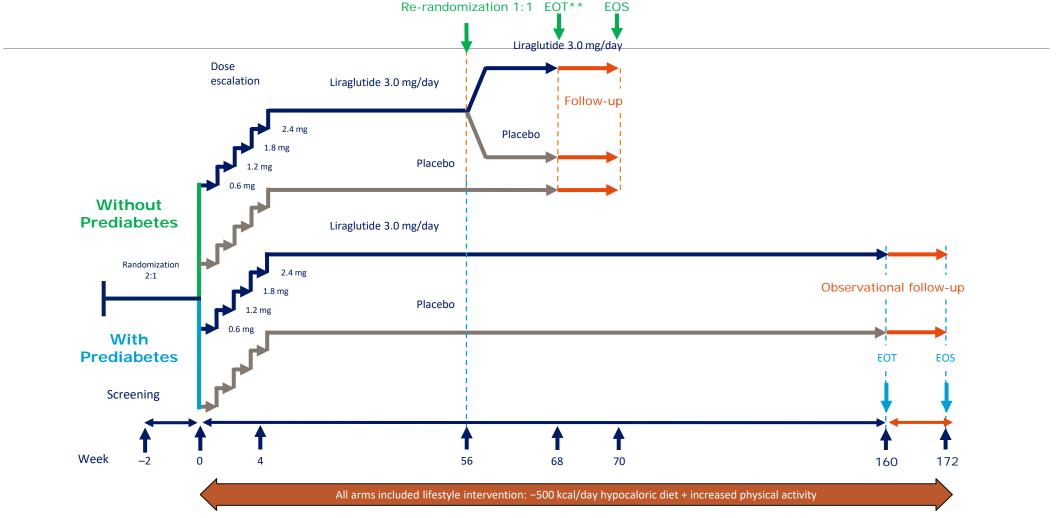
Let's Talk Liraglutide

The compound

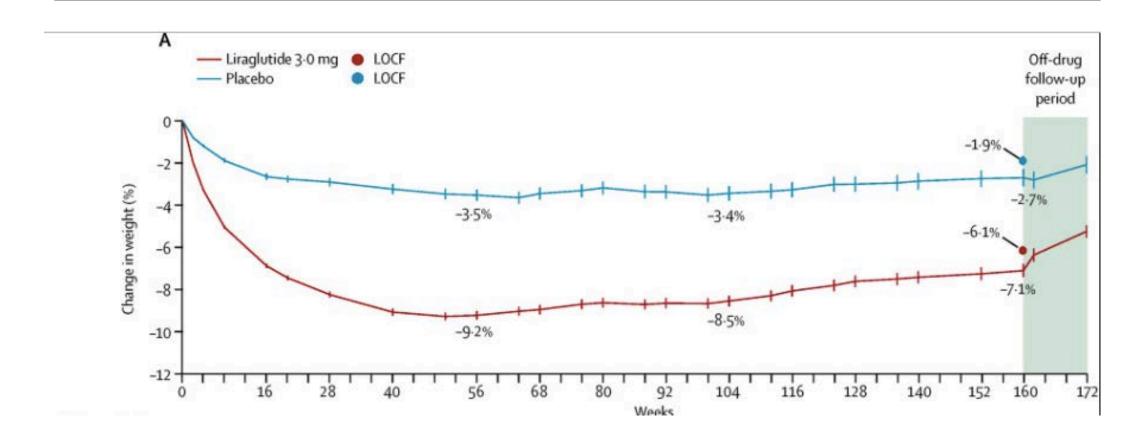

Physiological effects

Clinical Studies

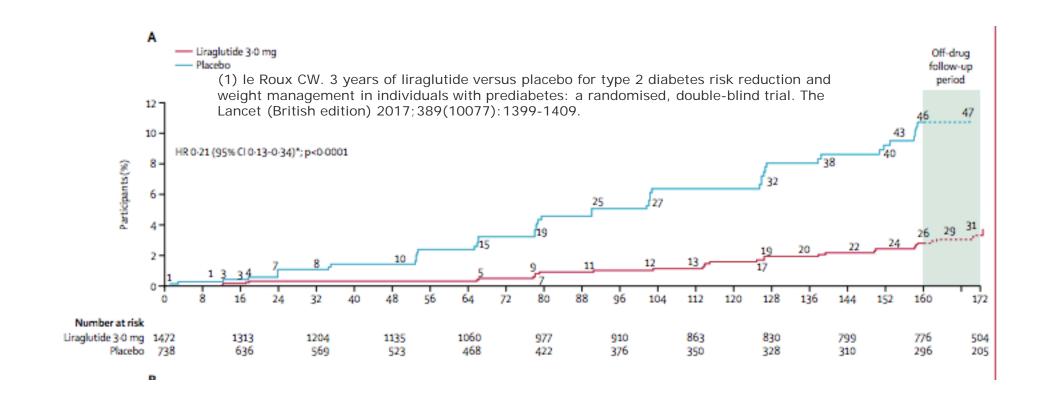
GLP-1 Receptors and the Hypothalamus



SCALE Trial: Mean change in body weight (%)


• Patients treated with Saxenda® experienced an observed mean waist circumference change of -8.2 cm vs. -3.9 cm with placebo (p<0.001)

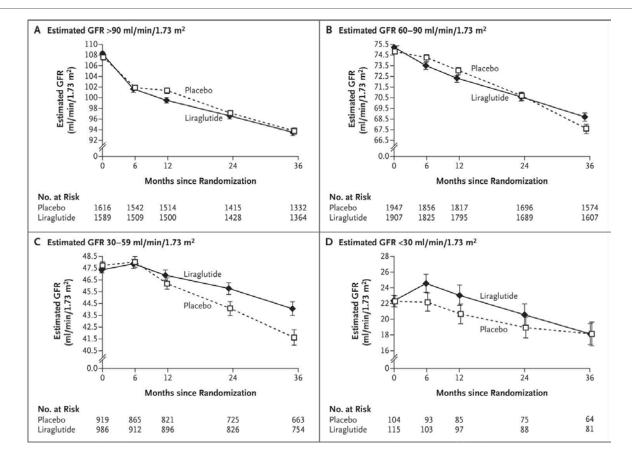
Further 3 year follow up after the study



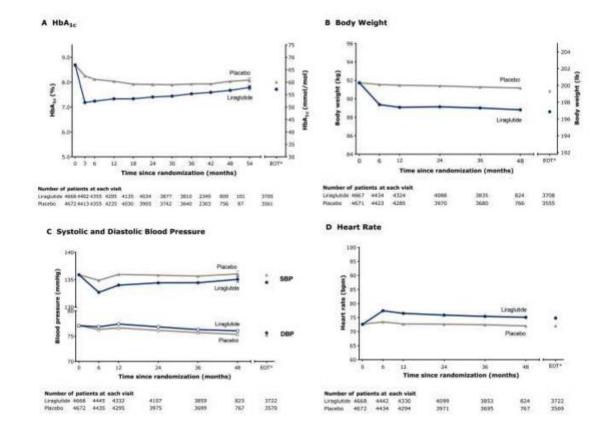
^{*}Treated or untreated hypertension or dyslipidaemia according to ATP-III; **Treatment ends at week 68 for individuals without prediabetes and is followed by an office treatment reliable up period of 2 wooks. ECT, and of treatment, EOS, and of study.

Weight loss

Progression to Diabetes at 3 yrs


Liraglutide and Renal Outcomes in T2DM

Outcome	Liraglutide (N = 4668)	Placebo (N = 4672)	Total (N = 9340)	Hazard Ratio (95% CI)	P Value
	no. of patients (ra	te per 1000 patient	yr of observation)		
Composite renal outcome	268 (15.0)	337 (19.0)	605 (17.0)	0.78 (0.67–0.92)	0.003
Components of composite renal outcome†					
New-onset persistent macroalbuminuria	161 (9.0)	215 (12.1)	376 (10.6)	0.74 (0.60-0.91)	0.004
Persistent doubling of serum creatinine level	87 (4.9)	97 (5.5)	184 (5.2)	0.89 (0.67–1.19)	0.43
Renal-replacement therapy	56 (3.1)	64 (3.6)	120 (3.4)	0.87 (0.61-1.24)	0.44
Death due to renal disease	8 (0.4)	5 (0.3)	13 (0.4)	1.59 (0.52-4.87)	0.41

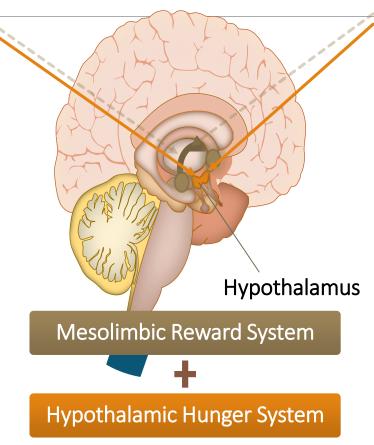

^{*} There were 17,822 patient-years of observation in the liraglutide group and 17,741 in the placebo group. All the events were adjudicated. Hazard ratios and P values were estimated with the use of a Cox proportional-hazards model with trial group as a covariate.

[†] The composite renal outcome consisted of new-onset persistent macroalbuminuria, persistent doubling of the serum creatinine level and an estimated glomerular filtration rate of 45 ml or less per minute per 1.73 m² of body-surface area (referred to as persistent doubling of the serum creatinine level), the need for continuous renal-replacement therapy (end-stage renal disease), or death due to renal disease. One patient who had macroalbuminuria at baseline had an event of new-onset persistent macroalbuminuria that was confirmed by adjudication after the patient had regression to microalbuminuria earlier in the trial.

Liraglutide and Renal Outcomes in T2DM

Liraglutide and Renal Outcomes in T2DM

Bupropion and Naltrexone (Contrave)


Mechanism of Action

Clinical Studies

Bupropion and Naltrexone: MOA

Bupropion HCl

Indicated for the treatment of major depressive disorder and as an aid to smoking cessation Stimulates POMC cells, which suppresses appetite

Naltrexone HCl

Indicated for the treatment of alcohol dependence and for prevention of relapse to opioid dependence Blocks β-endorphin negative feedback loop on POMC neurons, which further contributes to appetite suppression

POMC=pro-opiomelanocortin.

Figure adapted from Billes et al,¹ © 2014, with permission from Elsevier.

Weight loss Bupropion-Naltrexone

^aCompleter population; 303 based on 28-week endpoint, all others based on 56-week endpoint.

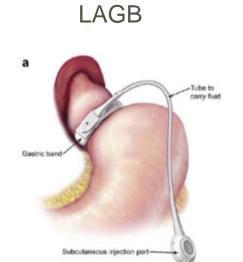
BMOD=behavior modification; **DM**=type 2 diabetes mellitus.

Bupropion and Naltrexone: Contraindications

Naltrexone-related:

- Chronic opioid use
- Abrupt discontinuation of alcohol or drug use

- Severe hepatic impairment
- Severe renal impairment

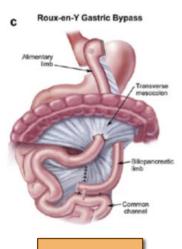

Bupropion-related:

- Uncontrolled hypertension
- Bupropion containing drugs
- Seizures, Bulimia, Anorexia
- MAOI use
- Thioridazine use
- Severe hepatic impairment
- Severe renal impairment

Unique to Contrave:

- Pregnancy

Bariatric Surgery



10-15%

Sleeve Gastrectomy

Gastric Bypass

30-40%

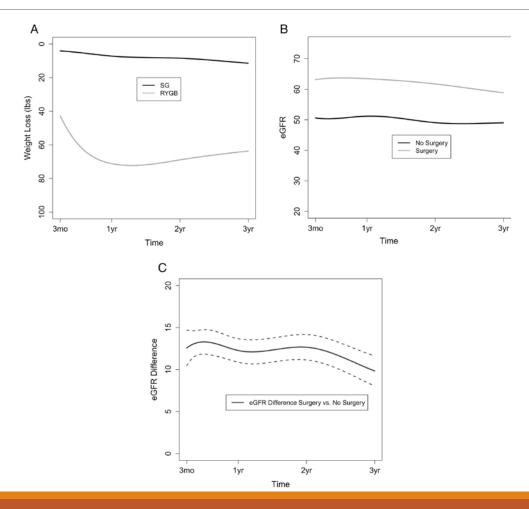

Bariatric Surgery in CKD (Japan)

Table 3

The changes in the eGFRcys and BMI values after bariatric surgery

CKD	eGFRcys	One year	p value	BMI	One year	p value
	baseline			baseline		
1	101 (94–108)	114 (103–127)	< 0.01	38.1 ± 6.2	26.5 ± 3.4	< 0.01
2	79 (74–84)	97 (87–104)	< 0.01	38.5 ± 6.9	26.7 ± 3.6	< 0.01
3	44 (42-47)	45 (43-63)	0.08	36.1 ± 6.3	26.6 ± 3.6	< 0.01
4	27.1	33		30.9	27.1	

Bariatric Surgery in CKD (US): GYGB

What are the surgical outcomes for patients with ESKD who undergo bariatric surgery?

Retrospective cohort study

MedPAR: Medicare claims database

Bariatric surgery recipients N=2698 ESKD N=201,104 non-ESKD

2006-2016

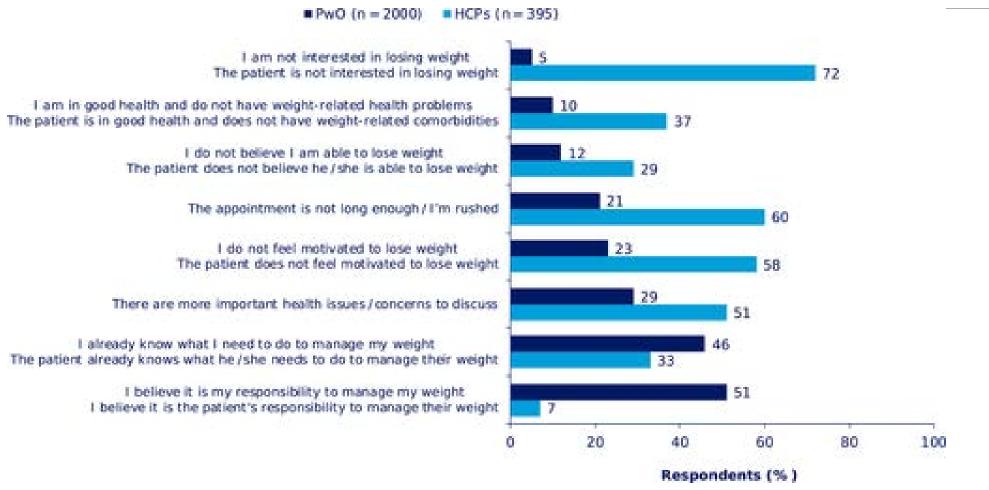
Bariatric surgery in patients with ESKD increased

Bariatric procedure choice in ESKD patients

Lap sleeve gastrectomy

<1%

2016 **84%**


Risk adjusted	outcomes Complications	Length of stay	Readmission
ESKD	3.4% [2.5-4.2]	2.2 [2.1-2.4]	8.6% [7.3-10.0]
Non- ESKD	3.6% [3.4-3.9]	1.9 [1.8-2.1]	5.4% [5.1-5.5]

Conclusions Laparoscopic sleeve gastrectomy is the most common bariatric surgical procedure in patients with ESKD. There is a favorable complication profile in sleeve gastrectomy patients.

Kyle H. Sheetz, Kenneth J. Woodside, Vahakn B. Shahinian, Justin B. Dimick, John R. Montgomery, and Seth A. Waits. *Trends in Bariatric Surgery Procedures Among Patients with ESKD in the United States.* CJASN DOI: https://doi.org/10.2215/CJN.01480219. Visual Abstract by Michelle Rheault, MD

Barriers to Treatment

Perceptions of barriers obesity management in Canada

Weight Bias In Healthcare: Perception

Physicians were rated the second most common source of obesity bias

53% of women with obesity received inappropriate comments from physicians regarding their weight

Younger women reported more stigma than older women

Participants also reported weight stigma from nurses (46%), dieticians (37%), and mental health practitioners (21%)

Weight Bias In Healthcare

40% of physicians reported a negative reaction toward a patient with obesity

>50% of primary care physicians regarded patients with obesity as "awkward, unattractive, ugly, and non-compliant."

Primary care physicians spend less time with obese patients compared with thin patients

Implicit bias is similar in health professionals specializing in obesity

Stigma

Weight Stigma: stereotypes and labels we assign to patients with obesity.

Treatment Access $\propto 1$ / Stigma

How do we improve treatment access?

Improving Treatment Access

- 1. Broad recognition that stigma undermines prevention & treatment
- 1. Have public health policies that identify stigma as a barrier to care
- 1. Funding toward research and programs to reduce stigma
- 1. Media buy-in for more compassionate portrayals of the individual

Weight Bias Starter Kit: Language

People-First Language

Rather than: "Mr. A is a 50 y/o obese male"

Use: "Mr. A is a 50 y/o male with obesity"

Use Neutral Terms

Rather than: fat, obese, heavy set

Use: excess weight, unhealthy weight, BMI

Avoid Blaming Language

Rather than: "have you thought about losing weight?"

Use: "can we talk about your weight today?" or "how do you feel about your weight?"

Obesity Management Starter Kit

- 1. Ask: for permission to discuss weight
- 1. Assess: obesity class, causes, complications
- 1. Advise: obesity risks and treatment benefits & options
- 1. Agree: realistic expectations & sustainable weigh loss goals
- 1. Assist: address drivers/barriers, resources, referrals, follow-up

Expert Obesity Toolkit

https://www.canadaobesitypeersupport.com/

Summary

- 1. Obesity is a chronic disease with a complex underlying physiology and a high level of morbidity
- 2. Effective treatments exist—though its use in kidney disease is poorly studied
- 3. Weight bias is a barrier to effective treatment of obesity and overall care of our patients with obesity

Questions