

Trends after transfer from home dialysis: Can we do better?

Simon Davies

Stating the problem

- Its not all about mortality what about the experience of modality transfer?
- How are we going to continue to improve?
 - Understanding modality transition
 - Evidence that this is also centre-level issue (ANZDATA, PDOPPS)
 - What centre-level 'levers' do we have?
 - Making the case for understanding centre 'culture'
 - Characterizing Centre Culture lessons form Inter-CEPt

SONG-PD

CORE OUTCOMES

Critically important to all stakeholder groups Report in all trials

2

2 MIDDLE TIER

Critically important to some stakeholder groups Report in some trials

3 OUTER TIER

Important to some or all stakeholder groups Consider for trials

PD-INFECTION CARDIOVASCULAR DISEASE MORTALITY TECHNIQUE SURVIVAL LIFE PARTICIPATION

Sleep

2 Anemia **Blood** pressure Bone disease Catheter complications Diabetes Fatigue Fluid Gastrointestinal problems Hospitalization Impact on family/friends Membrane function Mobility PD-pain Peritoneal sclerosis Potassium **Residual kidney function**

Ability to travel Appearance **Body temperature** Flexibility with time Itch/skin Memory/cognition Mood Pain (non-PD) Parathyroid hormone **Restless legs** Sexual function Weight change

Mortality Trends After Transfer From Peritoneal Dialysis to Hemodialysis

Annie-Claire Nadeau-Fredette^{1,2,16}, Nidhi Sukul^{3,4,16}, Mark Lambie^{5,16}, Jeffrey Perl⁶, Simon Davies⁵, David W. Johnson^{7,8,9}, Bruce Robinson¹⁰, Wim Van Biesen¹¹, Anneke Kramer¹², Kitty J. Jager¹², Rajiv Saran¹³, Ronald Pisoni¹⁰ and Christopher T. Chan¹⁴; and on behalf of the INTEGRATED Study Group¹⁵ 6683 (ANZDATA) 5847 (CORR) 21,574 (ERA Registry) 80,459 (USRDS).

Mortality Trends After Transfer From Peritoneal Dialysis to Hemodialysis

Check for up

Annie-Claire Nadeau-Fredette^{1,2,16}, Nidhi Sukul^{3,4,16}, Mark Lambie^{5,16}, Jeffrey Perl⁶, Simon Davies⁵, David W. Johnson^{7,8,9}, Bruce Robinson¹⁰, Wim Van Biesen¹¹, Anneke Kramer¹², Kitty J. Jager¹², Rajiv Saran¹³, Ronald Pisoni¹⁰ and Christopher T. Chan¹⁴; and on behalf of the INTEGRATED Study Group¹⁵

a <90 days after transfer Age

90-180 days after transfer

>180 days after transfer

Study		Hazard Ratio	HR	95%-CI
Category = 50-59				
ANZDATA			2.05	[1.44-2.91]
CORR			1.49	[1.04-2.14]
ERA			1.99	[1.61-2.46]
USRDS		*	1.85	[1.69-2.02]
Overall Hazard ratio		•	1.86	[1.72-2.01
Heterogeneity: $l^2 = 0\%$, $p = 0.54$			10000	
Category = 60-69				
ANZDATA			2.95	[2.13-4.08]
CORR			2.71	[1.98-3.71]
ERA			3.62	[3.00-4.37]
USRDS		*	3.00	[2.76-3.27]
Overall Hazard ratio		+	3.10	[2.79-3.44
Heterogeneity: I ² = 23%, p = 0.27				•
Category = >=70				
ANZDATA			- 4.94	[3.61-6.76]
CORR			4.26	[3.15-5.76]
ERA			5.25	[4.37-6.31]
USRDS		*	5.36	[4.95-5.81]
Overall Hazard ratio		•	5.26	[4.90-5.64
Heterogeneity: $I^2 = 0\%$, $p = 0.53$	-			
	-	1 1		
	0.5	1 2	7	

Study	Hazard Ratio	HR	95%-CI
Category = 50-59	1		
ANZDATA		1.18	8 [0.77-1.81]
CORR		1.50	[0.92-2.45]
ERA	<u>————</u>	1.62	[1.24-2.11]
USRDS	-#-	1.68	[1.51-1.86]
Overall Hazard ratio	•	1.64	[1.49-1.80]
Heterogeneity: $l^2 = 0\%$, $p = 0.45$			
Category = 60-69			
ANZDATA		1.73	[1.18-2.53]
CORR		2.20	[1.40-3.45]
ERA		2.96	[2.35-3.74]
USRDS		2.52	[2.29-2.79]
Overall Hazard ratio	-	2.45	5 [2.05-2.92]
Heterogeneity: / ² = 50%, p = 0.11			
Category = >=70			
ANZDATA		2.55	5 [1.76-3.70]
CORR		3.23	8 [2.10-4.98]
ERA		- 4.25	[3.39-5.32]
USRDS	*	4.14	[3.77-4.56]
Overall Hazard ratio	-	3.71	[3.06-4.50]
Heterogeneity: $l^2 = 59\%$, $p = 0.06$			
0.5	1 2	7	

b Sex <90 days after transfer

90-180 days after transfer

>180 days after transfer

Canadian Institute for Health Information Better data. Better decisions. Healthier Canadians.

C Cohort years <a> <a>

Study		Hazard Ratio	HE	R 95%-CI
Category = 2005-2009		1		
ANZDATA			0.9	1 [0.75-1.10]
CORR			0.8	3 [0.69-1.00]
ERA			0.7	6 [0.68-0.85]
USRDS		-#-	0.8	4 [0.79-0.90]
Overall Hazard ratio		•	0.8	3 [0.78-0.87]
Heterogeneity: $I^2 = 6\%$, $p = 0.36$				
Category = 2010-2014				
ANZDATA	_		0.6	8 [0.53-0.88]
CORR			0.7	9 [0.62-1.01]
ERA	_		0.6	1 [0.53-0.70]
USRDS		-#-	0.7	7 [0.73-0.82]
Overall Hazard ratio Heterogeneity: I ² = 71%, p = 0.02			0.7	1 [0.62-0.82]
		1 1		
	0.5	0.75 1	15	

90-180 days after transfer

>180 days after transfer

Study	Hazard Ratio	HR	95%-CI
Category = 2005-2009	1		
ANZDATA		0.81	[0.74-0.88]
CORR		0.99	[0.90-1.09]
ERA	-#-	0.76	[0.72-0.80]
USRDS	*	0.88	[0.86-0.90]
Overall Hazard ratio	-	0.85	[0.78-0.94]
Heterogeneity: $l^2 = 92\%$, $p < 0.01$			
Category = 2010-2014			
ANZDATA		0.79	[0.69-0.90]
CORR		0.81	[0.66-1.00]
ERA		0.74	[0.69-0.80]
USRDS	-	0.94	[0.91-0.96]
Overall Hazard ratio		0.82	[0.71-0.95]
Heterogeneity: /2 = 92%, p < 0.01			
0.	5 0.75 1	1.5	

d PD duration

<90 days after transfer

Study		Hazard Ratio	HR	95%-CI
Category = 6 months to 3 year		T.		
ANZDATA			1.26	6 [1.00-1.58]
CORR			1.31	[1.05-1.64]
ERA			1.18	8 [1.04-1.34]
USRDS		*	1.35	5 [1.27-1.43]
Overall Hazard ratio		+	1.30	[1.21-1.39]
Heterogeneity: $l^2 = 22\%$, $p = 0.28$				
Category = 3 years and over				
ANZDATA			- 2.20	[1.71-2.83]
CORR			2.00	[1.55-2.59]
ERA		-#	2.04	[1.77-2.35]
USRDS		*	2.14	[1.99-2.30]
Overall Hazard ratio		•	2.12	[1.99-2.25]
Heterogeneity: $l^2 = 0\%$, $p = 0.89$				
		1 1	_	
	0.5	1 2	3	

90-180 days after transfer

Study		Hazard Ratio	HR	95%-CI
Category = 6 months to 3 year		1		
ANZDATA			1.20	[0.88-1.63]
CORR			1.45	[1.03-2.05]
ERA		+*-	1.11	[0.95-1.30]
USRDS		*	1.25	[1.16-1.34]
Overall Hazard ratio		+	1.23	[1.16-1.31]
Heterogeneity: $l^2 = 0\%$, $p = 0.45$				
Category = 3 years and over				
ANZDATA			1.57	[1.09-2.26]
CORR			> 2.12	[1.41-3.18]
ERA			1.61	[1.32-1.95]
USRDS		-#-	1.87	[1.70-2.05]
Overall Hazard ratio		+	1.81	[1.66-1.97]
Heterogeneity: $l^2 = 3\%$, $p = 0.38$			_	
	1	1 1	1	
	0.5	1 2	3	

>180 days after transfer

Harard Datio

Hazaru Katuo	нк	95%-01
1		
-#-	1.16	[1.06-1.27]
	1.07	[0.97-1.18]
	1.03	[0.98-1.09]
	1.10	[1.08-1.13]
+	1.09	[1.04-1.14]
	1.34	[1.19-1.51]
	1.31	[1.13-1.51]
	1.21	[1.12-1.29]
*	1.35	[1.31-1.40]
•	1.30	[1.22-1.39]
	_	
1	2	

Chudu

0.5% (1

UD.

Mortality and modality switching

- Mortality on PD has decreased over time
- Modality switch rate is converging
- Mortality after switch is
 - Increased after transfer maximal first 30 days and detectable up to 150 days
 - There are regional differences (not clear why)
 - Risk factors are
 - Age (being older)
 - Sex (<90 days female, 90-180 days =, >180 days male)
 - Cohort period: Morality risk after switch is falling
 - PD duration: increased risk > years is about double

Original Article

Patients' experiences of transitioning between different renal replacement therapy modalities: A qualitative study

Peritoneal Dialysis International I-8 © The Author(s) 2020 Article reuse guidelines:

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0896860819896219 journals.sagepub.com/home/ptd

Els Holvoet¹, Sofie Verhaeghe², Simon Davies³, Gill Combes⁴, Karlien François⁵, David Johnson^{6,7,8}, Wim Van Biesen¹ and Liesbeth Van Humbeeck¹

PLOS ONE

RESEARCH ARTICLE

Renal staffs' understanding of patients' experiences of transition from peritoneal dialysis to in-centre haemodialysis and their views on service improvement: A multi-site qualitative study in England and Australia

Janet E. Jones^{1*}, Sarah L. Damery¹, Kerry Allen², David W. Johnson^{3¤a¤b}, Mark Lambie⁴, Els Holvoet⁵, Simon J. Davies⁴

Original Article

How do patients and their family members experience the transition from peritoneal dialysis to incentre haemodialysis? A multisite qualitative study in England and Australia

Kerry Allen¹, Sarah L Damery², Kim Sein², David W Johnson³, Simon J Davies⁴, Mark Lambie⁴, Els Holvoet⁵ and Gill M Combes²

Article reuse guidelines

sagepub.com/journals-permissions DOI: 10.1177/0896860820975596

journals.sagepub.com/home/ptd

What did these studies tell us?

- Common themes for patients: *although every situation is unique*
 - resistance to change and fear of HD; (anticipation of loss, loss of control, but in retrospect there can be gains/re-gain of control; preconception about HD – not always correct in retrospect)
 - transition experience shared with family; (Can be a relief for the family)
 - bodily adjustment and sense of self. (incontinence, fistulas, higher care requirements, transport – but some improvements...no fluid in belly)
- What do staff see as good clinical practice around transition?
 - Effective communication and planning (patients understanding why)
 - Avoid negative perceptions of alternative modality
 - Good continuity of care across transfer (?same team/consultant)
 - Access to psychological services

If we are to improve mortality after modality switch we need to understand modality transitions better

- Classifying/Defining modality switch
 - Causes for switching change over time
- Switching needs to be understood on the context of competing risks
 - Transplantation opportunity time on treatment
 - Death the elderly may die before transition occurs, maybe some switching is futile?
- Which factors are associated with switching risk?
 - Patient level factors
 - Centre level factors
 - Are these centre level factors modifiable?

Outcome measures for technique survival reported in peritoneal dialysis: A systematic review

Emma Elphick¹, Matthew Holmes¹, Matthew Tabinor¹, Yeoungjee Cho^{2,3,4}, Thu Nguyen⁵, Tess Harris^{6,7}, Angela Yee Moon Wang⁸, Arsh K Jain⁹, Daniela Ponce¹⁰, Josephine SF Chow^{11,12,13,14}, Annie-Claire Nadeau-Fredette¹⁵, Adrian Liew¹⁶, Neil Boudville¹⁷, Allison Tong¹⁸, David W Johnson^{2,3,4}, Simon J Davies¹, Jeffrey Perl¹⁹, Karine E Manera¹⁸ and Mark Lambie¹

- 17 different definitions over 25 trials
- Where defined, 5 included death, 5 did not
- Minimum time on HD (reported in 6 studies)
 - 30 days (2 trials)
 - "permanent transfer" (2 trials)
 - "any duration" (1 trial)
 - "on PD until end of follow up" (1 trial)

Reason switched to HD by country

% of events by country

Figure 3A

PDOPPS Peritoneal Dialysis Outcomes and Practice Patterns Study

Lambie et al, CJASN 2022

Reason by PD vintage at time of switch

% of events by country

Other Catheter ■ Water problem □ Solute clearance Infection All < 6 6-11 12-23 24-47 48+ PD vintage, months N Events:

■ Risk/Diagnosis of EPS Peritoneal leaks/Hernia Psychosocial/Medical

Lambie et al, CJASN 2022

Figure 3B

Secondary reason by PD vintage at time of switch

% of events by country

Figure 3B

International Comparisons of Outcomes - PDOPPS

Peritoneal Dialysis Outcomes

Australia/NZ

Thailand

UK

Lambie et al, CJASN 2022

Patient factors

Facility factors

P

Htay Htay, Yeoungjee Cho, Elaine M. Pascoe, Darsy Darssan, Annie-Claire Nadeau-Fredette, Carmel Hawley, Philip A. Clayton, Monique Borlace, Sunil V. Badve, Kamal Sud, Neil Boudville, Stephen P. McDonald, and David W. Johnson

- Similar patient characteristics predict as for PDOPPS
 - Younger age
 - Male sex
 - Higher BMI
 - Comorbidity
 - Primary renal disease
 - RRT starting modality
 - Socioeconomic status
 - Ethnicity

Table 3. Multivariable Cox shared frailty models for death-censored technique failure defined as 30 and 180 days							
	Т	echnique Failure	e 30 d	Т	echnique Failure	180 d	
Covariates	HR	95% CI	P Value	HR	95% CI	P Value	
Era (2004-2009)	1.0	Reference		1.0	Reference		
Era (2010–2014)	0.93	0.86 to 0.99	0.04	0.82	0.75 to 0.89	< 0.001	
Patient-level characteristics							
Age (decade)	0.93	0.91 to 0.96	< 0.001	0.93	0.90 to 0.96	< 0.001	
Men	1.07	0.98 to 1.14	0.06	1.12	1.04 to 1.22	< 0.01	
Race			< 0.001			< 0.001	
White	1.00	Reference		1.00	Reference		
Asian	0.79	0.70 to 0.89	< 0.001	0.80	0.70 to 0.92	0.002	
ATSI	1.12	0.97 to 1.30	0.12	1.19	1.01 to 1.40	0.04	
MP	0.85	0.69 to 1.03	0.10	0.86	0.68 to 1.08	0.19	
Other	0.67	0.52 to 0.87	0.003	0.67	0.50 to 0.90	< 0.01	
BMI, kg/m ²			< 0.001			< 0.001	
<18.5	1.06	0.88 to 1.30	0.53	1.0	0.79 to 1.25	0.99	
18.5-24.9	1.00	Reference		1.00	Reference		
25-29.9	1.08	0.99 to 1.17	0.07	1.04	0.95 to 1.14	0.41	
≥ 30	1.27	1.17 to 1.39	< 0.001	1.32	1.20 to 1.46	< 0.001	
Smoking status			0.03			0.08	
Nonsmoker	1.00	Reference		1.00	Reference		
Current smoker	1.09	0.98 to 1.21	0.10	1.08	0.96 to 1.22	0.19	
Former smoker	1.10	1.02 to 1.19	0.01	1.10	1.00 to 1.20	0.03	
Diabetes mellitus	0.98	0.87 to 1.10	0.73	1.01	0.89 to 1.16	0.87	
Cardiovascular disease	1.12	1.04 to 1.21	0.003	1.08	0.99 to 1.18	0.07	
Chronic lung disease	1.05	0.96 to 1.16	0.29	0.98	0.88 to 1.10	0.75	
Primary renal disease			< 0.001			0.004	
GN	1.00	Reference		1.00	Reference		
Diabetes nephropathy	0.98	0.86 to 1.11	0.73	0.96	0.82 to 1.11	0.54	
Hypertension	0.83	0.74 to 0.94	0.002	0.86	0.75 to 0.98	0.02	
Polycystic kidney disease	1.20	1.04 to 1.38	0.01	1.11	0.94 to 1.31	0.22	
Other/unknown	0.86	0.78 to 0.95	0.003	0.85	0.76 to 0.95	< 0.01	
Late referral	1.06	0.98 to 1.16	0.15	1.02	0.92 to 1.23	0.71	
Initial modality of RRT (PD) ^a							
Overall	0.69	0.63 to 0.76	< 0.001	0.70	0.62 to 0.79	< 0.001	
At 6 mo	0.73	0.67 to 0.79	< 0.001	0.73	0.66 to 0.80	< 0.001	
At 1 yr	0.76	0.70 to 0.82	< 0.001	0.76	0.70 to 0.83	< 0.001	
At 2 yr	0.84	0.78 to 0.91	< 0.001	0.82	0.75 to 0.90	< 0.001	
Initial PD modality (CAPD)	0.98	0.90 to 1.07	0.70	0.86	0.80 to 0.93	< 0.001	
IRSAD scores ^b			0.91			0.71	
<934	1.00	Reference		1.00	Reference		
934-983	1.02	0.93 to 1.12	0.66	1.03	0.93 to 1.15	0.52	
>983-1032	1.02	0.93 to 1.13	0.64	1.05	0.94 to 1.17	0.39	
>1032	0.99	0.90 to 1.09	0.90	0.99	0.88 to 1.11	0.91	

Htay Htay, Yeoungjee Cho, Elaine M. Pascoe, Darsy Darssan, Annie-Claire Nadeau-Fredette, Carmel Hawley, Philip A. Clayton, Monique Borlace, Sunil V. Badve, Kamal Sud, Neil Boudville, Stephen P. McDonald, and David W. Johnson

Variation between Centres:

Reduce by **15%** when adjusted for patient factors

Reduced by a further **37%** when adjusting for centre level characteristics

Some variation remains

Figure 2. | Variation in hazard of technique failure across 51 Australian peritoneal dialysis centers during the period of 2004–2014 in unadjusted (green diamonds), patient-level adjusted (red triangles), and patient- and center-level adjusted (blue circles) models with SEMs. Dialysis centers are ranked by hazard of technique failure.

Htay Htay, Yeoungjee Cho, Elaine M. Pascoe, Darsy Darssan, Annie-Claire Nadeau-Fredette, Carmel Hawley, Philip A. Clayton, Monique Borlace, Sunil V. Badve, Kamal Sud, Neil Boudville, Stephen P. McDonald, and David W. Johnson

Htay Htay, Yeoungjee Cho, Elaine M. Pascoe, Darsy Darssan, Annie-Claire Nadeau-Fredette, Carmel Hawley, Philip A. Clayton, Monique Borlace, Sunil V. Badve, Kamal Sud, Neil Boudville, Stephen P. McDonald, and David W. Johnson

0	Т	echnique Failure	2 30 d	Technique Failure 180 d		
Covariates	HR	95% CI	P Value	HR	95% CI	P Value
Center-level characteristics						
Transplant center	1.06	0.90 to 1.25	0.52	1.05	0.89 to 1.25	0.54
Center size (incident patients per 1 yr)			0.004			< 0.001
<16	1.19	1.03 to 1.38	0.02	1.23	1.07 to 1.43	< 0.01
16-48	1.00	Reference		1.00	Reference	
>48	0.77	0.60 to 0.98	0.03	0.79	0.63 to 0.99	0.04
APD exposure, ^c %			0.15			0.04
<41	1.17	0.99 to 1.39	0.07	1.14	0.97 to 1.35	0.11
41–71	1.00	Reference		1.00	Reference	
>71	1.11	0.95 to 1.31	0.17	1.22	1.04 to 1.42	0.01
Icodextrin use,° %			0.69			0.68
<35	0.93	0.78 to 1.12	0.47	0.94	0.79 to 1.22	0.50
35-67	1.00	Reference		1.00	Reference	
>67	0.95	0.81 to 1.11	0.53	0.94	0.81 to 1.10	0.46
Phosphate in target, ^c %			0.32			0.66
<40	1.14	0.96 to 1.37	0.14	1.08	0.91 to 1.29	0.37
40-46	1.00	Reference		1.00	Reference	
>46	1.02	0.86 to 1.21	0.80	1.05	0.89 to 1.24	0.60
Antifungal use, ^d %			0.32			0.47
<38	0.98	0.83 to 1.16	0.81	0.95	0.80 to 1.11	0.50
38 86	1.00	Reference		1.00	Reference	
>86	1.14	0.94 to 1.36	0.18	1.07	0.90 to 1.29	0.44

What does our current understanding of switching tell us?

- Classifying modality switch
 - Causes for switching change over time peritonitis remains the main problem
- Switching needs to be understood on the context of competing risks
 - Transplantation time on treatment does not equate to technique failure but it does cause attrition of healthier patients from the PD pool, at least partly explaining why time on PD is a risk factor for post-switch mortality
 - Is some switching futile or inappropriate?- this is suggested, but more research needed
- Which factors are associated with switching risk?
 - Patient level factors these are the mostly same as for the post-switch mortality risk (these are hard to change)
 - Centre level factors these matter; size/experience/team working seems important – but there must be something else....
 - Are these centre level factors modifiable? Probably

The Inter-CEPt study

Intervening to eliminate the centre effect variation in home dialysis use.

- In depth, ethnographic study of centres that achieve good home dialysis outcomes, with inclusion of BAME and socioeconomically deprived groups
- National survey of practices linked to actual outcomes linked to the UKRR, accounting for competing risks
- In depth health economic analysis and modelling Intervention bundle

BMJ Open Intervening to eliminate the centreeffect variation in home dialysis use: protocol for Inter-CEPt – a sequential mixed-methods study designing an intervention bundle

> Maatla Tshimologo,¹ Kerry Allen,² David Coyle,³ Sarah Damery,⁴ Lisa Dikomitis (),^{1,5} James Fotheringham,⁶ Harry Hill,⁶ Mark Lambie,¹ Louise Phillips-Darby,¹ Ivonne Solis-Trapala (),¹ Iestyn Williams,² Simon J Davies ()¹

Ethnography: Summary of What we found

- Patients liken choosing their dialysis modality to an act of faith – so it is all about **trust**
- Sites have different ways of organizing their services, there is **no ideal model**.
- What all sites shared were aspects of their culture, attitudes and behaviour that led to good uptake of home therapies.
- Sites acknowledge that there were inequalities and welcome greater investment in people's social, psychological and cultural needs

The survey: Methods

SURVEY DESIGN

- Developed by drawing on ethnography findings, literature, clinical input, NASSS framework
- Sent electronically to all 51 renal units in England (June September 2022)
- Aimed for responses from varied roles (centre managers, clinical leads, home therapies consultants and nurses, Advanced Kidney Care clinic staff)
- Categorical and Likert scale responses

SURVEY ANALYSIS

- Individual-level responses combined into a single centrelevel response following pre-determined aggregation rules
- Descriptive analysis explored centre practice through pairwise correlations between aspects of practice and home dialysis uptake rates (UKRR 2019 incidence data)

Services offered by the renal unit	Information to support modality choice	Vascular and catheter access	Finances and commissioning
Pre-dialysis education	Home dialysis training	Clinical leadership and home dialysis attitudes	Engagement with wider regional networks
Challenges to offering home therapies to different groups	Unit support for patients choosing home dialysis	Organisation of PD and HHD services (staffing, machines)	COVID-19

Survey responses

- 180 responses returned
- 50/51 centres represented (98.0%)
- Range per unit 1-10
- Mean per unit 3.5
- Mean roles represented per unit 3.2 (range 1-7)

Nurses (n=58; 32%) AKC staff (n=41; 23%) Clinical leads (n=37; 21%) Physicians (n=35; 19%) Managers (n=9; 5%)

Non-responder analysis showed no systematic difference in rates of home dialysis uptake between responding and non-responding units for each question

Results: clinical leadership and organisational culture

Results: clinical leadership and organisational culture

Staff have opportunities to learn from others and reflect on practice

Correlation coefficient 0.38 (95% CI: 0.11 to 0.60)

Centre has strong commitment promoting continuous quality improvement

Correlation coefficient 0.29 (95% CI: 0.01 to 0.53)

Hypothesized ordering of factors - proposed causal pathway

F		Centre Culture				
 Centre P Pre-em Challen patients Roadsh years Does you patients Does you patients Poes you patients N N<td>ractice ptive transplant ges treating BME s ow in previous 2 our centre support s with lome modifications/ quipment Vater & electric costs pecial treatment egistration IP advice ocial care/social vorker tenal psychologist advice for working ge patients advice about council ax reduction</td><td> How well does cent quality improvement Opportunition on practice Trying new intervention Routine colling feedback dat Opportunition practice and others Opportunition others Opportunition others Opportunition others Opportunition contribute to research Centre support developing Staff support develop ow Service related fact limit access to hom for patients Attitudes of Lack of time barriers to get Insufficient within center </td><td>ere support nt initiatives es to reflect nitiatives ection of ta es to discus I learn form es to o wider ort for ousiness cases ted to n research ors which e therapies other staff to address rowth coordination e</td><td>Centre chan Transplant Offer assis Centre size Service rela limit access for patient Fina budg Stress capa Diffic with Diffic</td><td>racteristics centre sted PD a lated factors which is to home therapies is so home therapies is ses on ICHD acity isses on staff acity isses on staff acity isoulty recruiting staff n right expertise iculty retaining staff n right expertise</td><td>Patient Demographics • Age • Sex • Ethnicity • SES Patient Characteristics • Transplant waitlist status • Diabetes as PRD • Distance from centre</td>	ractice ptive transplant ges treating BME s ow in previous 2 our centre support s with lome modifications/ quipment Vater & electric costs pecial treatment egistration IP advice ocial care/social vorker tenal psychologist advice for working ge patients advice about council ax reduction	 How well does cent quality improvement Opportunition on practice Trying new intervention Routine colling feedback dat Opportunition practice and others Opportunition others Opportunition others Opportunition others Opportunition contribute to research Centre support developing Staff support develop ow Service related fact limit access to hom for patients Attitudes of Lack of time barriers to get Insufficient within center 	ere support nt initiatives es to reflect nitiatives ection of ta es to discus I learn form es to o wider ort for ousiness cases ted to n research ors which e therapies other staff to address rowth coordination e	Centre chan Transplant Offer assis Centre size Service rela limit access for patient Fina budg Stress capa Diffic with Diffic	racteristics centre sted PD a lated factors which is to home therapies is so home therapies is ses on ICHD acity isses on staff acity isses on staff acity isoulty recruiting staff n right expertise iculty retaining staff n right expertise	Patient Demographics • Age • Sex • Ethnicity • SES Patient Characteristics • Transplant waitlist status • Diabetes as PRD • Distance from centre

• QI initiatives in past 5 years

• Lack of support from senior managers/leaders

Modality Transitions – multistate model

Hazard ratios for transitions in modality

	In centre HD to PD	In-centre HD to home HD		PD to In-centre HD	Home HD to In-centre HD
Ethnicity			Ethnicity		
Asian	0.67 (0.62,0.73)	0.29 (0.26,0.34)	Asian	0.87 (0.83,0.93)	0.82 (0.67,1.01)
Black	0.63 (0.58,0.70)	0.47 (0.41,0.53)	Black	1.17 (1.09,1.25)	0.82 (0.67,1.01)
White	REF	REF	White	REF	REF
Deprivation group			Deprivation group		
1	REF	REF	1	REF	REF
2	0.90 (0.83,0.98)	0.94 (0.85,1.05)	2	1.03 (0.98,1.10)	1.02 (0.8,1.17)
3	0.80 (0.74,0.87)	0.70 (0.63,0.78)	3	0.99 (0.93,1.05)	0.81 (0.70,0.94)
4	0.71 (0.65,0.76)	0.60 (0.54,0.67)	4	1.04 (0.98,1.11)	0.87 (0.75,1.01)
5	0.62 (0.58,0.67)	0.49 (0.44,0.54)	5	1.06 (0.99,1.12)	0.84 (0.73,0.98)
Sex			Sex		
Male	0.96 (0.91,1.01)	0.90 (0.84,0.96)	Male	0.86 (0.82,0.89)	1.05 (0.95,1.15)

Inter-CEPt National Survey: Descriptive Analysis

- 50/51 units in England responded
- Confirmed the findings of the ethnography
- How services were organized did not associate with home therapy use
- Availability of assisted dialysis increased use
- Measures of culture and leadership were important
- Quality improvement was especially important
- Self-rated perception of how well a centre met patients needs correlated strongly with home therapy use

Quality improvement

- Best examples of this in PD relate to infection management
 - Australian experience
 - SCOPE Dialysis Collaborative

2018 ANZDATA Annual Report, Figure 5.23

Peritonitis Outcomes (Australia)

SCOPE Dialysis Collaborative: Impact of Standardized Infection Control PD Procedures and Reporting on Peritonitis Rates in Pediatric Peritoneal Dialysis Patients

Neu et al KI 2016

Summary

- PD to HD transition-related mortality is improving but remains a concern
- There are opportunities to reduce this mortality and perhaps more importantly the experience of modality switch by
 - Preventing unnecessary switch (futile, infection related)
 - Managing the switch better (infection, timing, managing expectations, supporting patients better)
- A key tool is quality improvement (needs a committed team and time to execute)
- Centre culture is at the heart of good practice a coherent MDT, strong leadership, continuity of care, supportive patient/carer environment

Acknowledgements - Funding

- Baxter HealthCare
- Japanese Society of Peritoneal Dialysis
- Kidney Research UK
- Canadian Institute for Health Research
- National Health and Medical Research Council of Australia
- Research for Patient Benefit Programme, National Institute for Health Research, UK
- Thailand Research Foundation,

National Research Council of Thailand and Chulalongkorn University

 National Institute for Health and Social Resea (Health Services and Delivery Research)

International Group Research Assessing Transition Effects in Dialysis

PD

Peritoneal Dialysis Outcomes and Practice Patterns Study

