

THE UNIVERSITY OF BRITISH COLUMBIA

Implementation of Precision Medicine in Kidney Transplantation

James H Lan Assistant Professor, University of British Columbia Medical Director, HLA Immunology Laboratory Nephrology & Kidney Transplantation Vancouver General Hospital

BC Kidney Day November 10, 2023

- Overview of burden of kidney disease in Canada
- To describe the current challenges in kidney transplantation
- To describe the approach of applying precision medicine to improve outcomes in transplantation
- To describe willing to across as a solution for highly sensitized patients

Background: Burden of Kidney Disease

- CKD affects 1 in 10 Canadians¹, with 48,000 Canadians with ESRD²
- Unadjusted 5-year mortality rate of 55%²
- Health care cost of \$2.5 billion annually¹
- Kidney transplantation provides both mortality³ and quality of life benefits⁴
- Transplant saves \$250,000/patient over 5 years compared to hemodialysis⁵
- 52% of ESRD patients in BC are treated with a kidney transplant (Canada: 43%)

2. Canadian Organ Replacement Register, 2008 to 2017: End-Stage Kidney Disease and Kidney Transplants.

^{1.} Manns B, et al. The Financial Impact of Advanced Kidney Disease on Canada Pension Plan and Private Disability Insurance Costs. *Can J Kidney Health Dis.* 2017;4: 2054358117703986.

^{3.} Merion RM, et al. Deceased-donor characteristics and the survival benefit of kidney transplantation. JAMA. 2005;294(21): 2726-2733.

^{4.} Ortiz F, et al. Health-related quality of life after kidney transplantation: who benefits the most? *Transpl Int.* 2014;27(11): 1143-1151.

^{5.} Rabeau Y. The Economics of Kidney Failure. The Kidney Foundation of Canada – Quebec Branch. 2012.

Background: Stagnant long-term kidney transplant outcomes

Years post-transplant

Rejection is a leading cause of premature graft loss

Dual challenges in transplantation: Mr. A

- 40M, Type 1 DM, T8 paraplegia
- May 2020: pre-emptive LD Tx
 - Induction: Basiliximab (weak)
 - Acute rejection POD#10
 - Pyelonephritis (recurrent)
 - Graft failed < 2 yrs

- Mar 2023: deceased donor Tx
- Induction: ATG (strong)
- CMV viremia >100,000
- Febrile neutropenia (Neut 0.1)

Precision Medicine CanPREVENT AMR: Applying precision medicine technologies in Canada to prevent antibody-mediated rejection and premature kidney transplant loss

\$9.7 MILLION AWARDED TO KIDNEY TRANSPLANTATION RESEARCH

GCTC GENOME CANADA TRANSPLANT CONSORTIUM

Opelz, Transplantation 2007

		80	90
Recipient	B*7	AQTDRESLRN	LRGYYNQSEA
Donor 1	B*8	T	
Donor 2	B*35	TY	
Donor 3	B*44	$\mathbb{T}{Y}{N}{\mathbb{T}}$	ALR

Impact of induction on acute rejection in kidney transplant recipients with eplet mismatches

Jenny Tran*, Yoojin Choi*, Mei Lin Bissonnette, Cindy Luo, Doris Chang, Casara Hong, Laura Bywater, Karen Sherwood, Paul Keown, Matthew Kadatz, James Lan

American Society of Histocompatibility and Immunogenetics, 2023 Canadian Society of Transplantation, 2023

* **High:** \geq 7 at DR, \geq 9 at DQ, or a combination of \geq 7 DR or \geq 9 DQ

Methods

PROMIS data validated by Cindy, Casara & Laura; PROMIS biopsy data extracted by Yoojin & Jenny; Eplet mismatch calculated by Jenny; Biopsies scored by MeiLin; Statistical analyses performed by Doris & Matt; Study supervised by James

High eplet mismatch identifies patients at increased risk of acute rejection

MV Regression for Acute Rejection

	Class II Eplet Mismatch
	HR (95% CI)
HLA MM	
Low	Reference
High	2.93 (1.36 – 6.29)
Induction	
ATG	Reference
BAS	1.72 (1.06 – 2.81)
Recipient Age	
< 40	Reference
41 – 60	0.48 (0.31 – 0.74)
≥ 61	0.25 (0.14 – 0.45)
Donor Type	
Living Donor	Reference
Deceased Donor	0.94 (0.62 – 1.44)
Donor Age	
< 40	Reference
41 – 60	1.99 (1.28 – 3.09)
≥ 61	1.83 (0.96 – 3.48)

Combining eplet mismatch with induction type stratifies patients into 3 acute rejection risk categories

Is "precision medicine" a buzz term or can we actually implement it?

Rapid high resolution typing in deceased donor transplant

HLA antigen 1 HLA antigen 2

Oxford Nanopore for rapid deceased donor high resolution typing

Dr. Karen Sherwood

- 512*4=2048 pores
- 450 bases/pore/sec
- Long reads (avg > 10K bp)
- Easy and rapid workflow

	Miseq	Nanopore
Library prep	10-12 hr	1.5 hr
Sequencin g time	40 hr	1 hr

Total turn-around time 5 hr 30 minutes

- DNA extraction: 20 minutes
- Set-up: 15 minutes
- PCR time: 135 minutes
- Library prep time: 80 minutes
- Sequencing time: 60 minutes
- HLA analysis: 15 minutes
- Epitope mapping: 5 minutes
- Final report

- 40 F, blood group A, ESRD from IgA
- On dialysis since 2010
- No kidney offers despite being in HSP
- History of severe peritonitis \rightarrow PD no longer possible
- Multiple attempts at fistula creation all failed
- Line access no longer possible → thigh graft
- cPRA = 100% (history 1 pregnancy, 2 blood transfusions)

Cumulative Specificities for cPRA

Specificities for Calculating cPRA

A:1 3 11 25 26 29 30 31 32 33 34 36 43 66 68 69 74 B:7 8 13 18 35 37 38 39 41 42 44 45 46 47 48 49 50 51 52 53 54 55 57 58 59 60 61 62 63 64 65 67 71 72 73 75 76 77 78 81 82 Cw:9 10 15 DR:4 7 8 9 10 11 12 13 14 15 16 17 18 0103 DRw:51 52 DQ:2 6 DP:1 3 5 6 9 10 11 13 14 15 17 18 19 20

Organ sharing for highly sensitized patients

Patient 3: cPRA = 99/100= 99%

CBS, Feb 28 2019

Offer probability over time by cPRA

Crossing Preformed DSA: The Science of Risk Assessment

Crossing Preformed DSA: The Imperfect Science of Risk Assessment

Meta-analysis of PLNF transplants	Rejection Risk	Graft Survival			
Mohan et al, JASN 2012	AMR: RR=1.98 [1.36-2.89], P<0.001	Graft loss: RR=1.76 [1.13–2.74], P=0.01			
Buttigieg et al, NDT 2018	AR (1yr): RR=1.35 [0.90-2.02], P=0.14	Graft loss: RR=1.66 [0.94-2.94], P=0.08			

References	Origin/study design	Study groups	Luminex vendor/cut-off	FCXM sampling/cut-off	Desensitization for PLNF group	Induction immunosuppression	Maintenance immunosuppression
Adebiyi <i>et al.</i> [13]	USA Retrospective	DSA ^a (-) $n = 498$ PLNF ^b $n = 162$	One Lambda 2-fold above negative control and absolute intensity >500 MFI	Peripheral blood or lymph node T cells ≥330 MFI B cells ≥1000 MFI	Not reported/not performed	No induction in low-risk ATG in high-risk Basiliximab in clinical trials	Mostly tacrolimus, MMF and steroids A minority mTORi instead of MMF
Orandi <i>et al</i> . [11]	USA Retrospective	DSA (-) $n = 9669$ PLNF $n = 185$ FCXM (+) $n = 536$ CDCXM (+) $n = 304$	Vendor not reported >1000 MFI	Cut-off and sampling not reported	Not reported/not performed	Not reported	Not reported
Higgins <i>et al.</i> [12]	UK Retrospective	DSA (-) $n = 28$ PLNF $n = 23$ FCXM (+) $n = 44$ CDCXM (+) $n = 17$	One Lambda ≥500 MFI	Peripheral blood or spleen RMF 4.0 for first grafts, 2.5 for re-grafts	Double filtration plasmapheresis	Basiliximab	Tacrolimus, MMF and steroids
Verghese <i>et al.</i> [14]	USA Retrospective paediatric population	DSA (-) $n = 72$ PLNF $n = 10$	One Lambda Cut-off not reported	Cut-off and sampling not reported	Not reported/not performed	Daclizumab Alemtuzumab	Cydosporine or tacro- limus, azathioprine or MMF or sirolimus, cterroid or sterroid free

Crossing Preformed DSA: The Science of Risk Assessment

Adaptive Design as a Method to Implement WTC

- Adaptive design = allows for planned modifications to one or more aspects of the design based on accumulating data from subjects in the trial¹
- Allows the trial to adjust for information that was not available when the trial began

JAMA 2006

¹FDA: Adaptive Designs for Clinical Trials of Drugs and Biologics Guidance for Industry

Study Question: what is the maximum tolerable dose of a new drug

Figure 1 - Elements of a dose escalation study.

Hansen, Cancer Control 2014

Transplanting Across Historical DSA – BC's Experience

- 40 F, blood group A, ESRD from IgA
- On dialysis since 2010, KPD with 2 sisters
- No kidney offers despite being in HSP
- History of severe peritonitis \rightarrow PD no longer possible
- Multiple attempts at fistula creation all failed
- Line access no longer possible → thigh graft
- cPRA = 100% (history 1 pregnancy, 2 blood transfusions)

April 2013

Oct 2019

Transplant (Nov 13, 2019)							
		,					
DSA	15-Oct- 19	14-Nov- 19	19-Nov- 19	26-Nov- 19			
POD			POD 6	POD 13			
A32	80	700	950	2400			
B57	100	110	340	2200			

Plasmapheresis Rituximab

	15-Oct-	14-Nov-	19-Nov-	26-Nov-	10-Dec-	23-Dec-	07-Jan-	07-Feb-	06-Mar-
D 3A	19	19	19	19	19	19	20	20	20
POD			POD 6	POD 13	POD 28				
A32	80	700	950	2400	80	40	10	25	25
B57	100	110	340	2200	70	30	10	20	10
DR7	250	300	4900	10400	500	200	10	30	20

Can we apply precision medicine to post-transplant monitoring?

Non-invasive monitoring: donor-derived cell-free DNA

Donor-derived cell free DNA is a more sensitive biomarker for renal injury than serum creatinine

Bu, KI 2022

Canadian Multicenter RCT: Clinical evaluation of cell-free DNA for Renal Allograft Injury (CLEAR)

VGH Immunology Lab UBC Kidney Transplant

Karen Sherwood **Jenny Tran Yoojin Choi Franz Fenninger Doris Chang** Sabina Dobrer Logan Tate **Oliver Gunther** Vivian Wu **Vince Benedicto** Jennifer Beckrud Krishna Dwarka

John Gill **Jag Gill** Matt Kadatz **Olwyn Johnston** Kevin Wen Amanda Cunningham **David Landsberg Justin Gill Elizebeth Hendren** Mei Lin Bissonnette Mazi Riazy Susanna McRae

G C Genome Canada T C Transplant Consortium

Vancouver-CoastalHealth **Research Institute**

