a place of mind

SGLT2i , Diabetes and CKD care How do we change practice

A Levin MD FRCPC FCAHS OC Professor of Medicine, Head Division of Nephrology University of British Columbia Sr Lead Integration Clinical and Academic Networks PHC Vancouver, Canada

Disclosures... Perspectives

- · Clinician, administrator and researcher
- Grant funding:
 - Kidney Foundation of Canada (KFOC)
 - Canadian Institute of Health Research (CIHR)
- Research support:
 - Amgen, AstraZeneca, Boehringer Ingelheim, Janssen, Merck, Otsuka
- Steering committee / DSMB
 - CREDENCE, EMPA-KIDNEY
 - NIH: Kidney Precision Medicine Project; HiLO Project
 - RESOLVE (Australian Kidney Trials Network)
 - Reata Scientific Committee
 - Gilead National Lead DKD and CKD selonsertib)
 - Certa Therapeutics Scientific Advisory Committee
- Participation in SGLT2 inhibitor trials
 - CREDENCE
 - DAPA-CKD
 - DIAMOND
 - EMPA-KIDNEY

Learning Objectives : Improved understanding of

Mechanism of action of SGLT2i in protection of kidney and CV disease Clinical trial data in different CKD populations to support use of SGLT2i Side effects and caveats for use of SLGT2i in clinical practice.

Translating improved understanding to clinical practice

CKD, chronic kidney disease; SGLT2, sodium-glucose co-transporter 2

Productive Life Years Lost Due to Premature Death or Disability in CKD

S

õ

Better care for CKD is urgently needed

LOW RATES OF CKD AWARENESS AND DETECTION IN THE CURRENT ERA

C Adjusted awareness 100% -80% Proportion Aware 60% = 0.9140% p = 0.8720% p = 0.66p = 0.050%-2011-2016 1999-2004 2005-2010 Year Interval

Detection

In two large US healthcare systems with a cohort of 2.6 million between 2006 and 2017, albuminuria/proteinuria was measured in 15% of patients with diabetes and CKD and in 5% of patients with diabetes and no CKD.

Chu CD et al. Am J Kidney Dis 2020;76:174-183

MEDICATION USE IN CKD STAGES 3-5 ND TWO LARGE US HEALTHCARE SYSTEMS (N=660,000)

Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016

Conclusion: The global toll of CKD is significant, rising, and unevenly distributed; it is primarily driven by demographic expansion and in some regions significant tide of diabetes epidemic.

Xie et al. Kidney International, 2018

Prevalence of Chronic Kidney Disease: Canada

- 1 in 10 Canadians has chronic kidney disease...4 million¹
- The number of Canadians living with Kidney failure has grown 35% since 2008²
- Diabetes is the leading cause of kidney failure at 39%²
- 46% of new kidney failure patients are under the age of 65²
- Nearly 49,000 Canadians are being treated for kidney failure²
 - 57.5% are on dialysis
 - 42.5% have a functioning transplant
- In 2016 kidney disease was the 11th leading cause of death in Canada³

Adapted from The Kidney Foundation of Canada 2019 "Facing the Facts About Kidney Disease"

^{1.} Manns B et al, The financial impact of advanced kidney disease on Canada Pension Plan and private disability insurance costs. Canadian journal of kidney health and disease. 2017 (4):1-11

^{2.} Canadian Institute for Health Information's CORR Annual Statistics on organ replacement in Canada: dialysis, transplantation and Donation, 2008-2017 (excludes Quebec)

^{3.} Statistics Canada. 2016

Economic impact of kidney disease

- Dialysis is the most common treatment for kidney failure and costs the health care system approximately \$100,000/patient/year
- Out-of-pocket costs associated with dialysis can amount to 12.5% of a patient's income
- CKD costs the Canadian Health Care System ~ \$50 billion/year
- CKD patients are less likely to be employed
 - Productivity losses
 - Additional CPP and private insurance costs of nearly **\$1 billion/year**

Adapted from The Kidney Foundation of Canada 2019 "Facing the Facts About Kidney Disease" Manns B, McKenzie S, Au F, Gignac P, Geller L. The Financial Impact of Advanced Kidney Disease on Canada Pension Plan and private disability insurance costs. CJKHD 2018

Current Canadian data describes Dialysis/ Kidney Failure due to DM growing

Figure 3 Incident end-stage kidney disease patients, with and without diabetes, Canada (excluding Quebec), 2008 to 2017 (number)

Patient diabetes status	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Non-diabetes	2,412	2,387	2,321	2,284	2,363	2,489	2,416	2,531	2,609	2,550
Diabetes	1,994	2,192	2,342	2,424	2,559	2,682	2,827	2,995	3,026	3,049

Note

Data from Quebec was not included because of significant under-reporting between 2011 and 2017.

Source

Canadian Organ Replacement Register, 2018, Canadian Institute for Health Information.

Until recently, the standard of care for CKD in patients with diabetes was based on 3 "cornerstone" treatments

But control of blood sugar has limitations with respect to some patient outcomes

Patients who received intensive glycemic control did not seem to obtain protection against cardiovascular events¹

Intensive treatment of A1C with targets $\leq 6\%$ may increase risk of CV events and mortality for patients unable to achieve those targets²

While reductions in kidney events associated with A1C control are statistically and clinically significant, substantial residual risk remains

1. Diabetes Canada Clinical Practice Guidelines Expert Committee. Can J Diabetes. 2018 Apr;42 Suppl 1:S201–S209 2. Riddle et al. Diabetes Care. 2010; 33:983-990

Blood Pressure Control

Studies in the 1990s showed that improved blood pressure control slowed eGFR decline

- Untreated hypertension:
 -10 to -12 mL/min/1.73 m²/year
- Controlled hypertension:
 -5 to -6 mL/min/1.73 m²/year

Blood Pressure Control

Blood pressure control

Analysis of achieved BP in the ADVANCE trial demonstrated a relationship between blood pressure and risk of renal events regardless of medication¹

 Similar results were seen in an analysis from the IDNT trial²

1. de Galan et al. J Am Soc Nephrol. 2009; 20(4):883-892. 2. Pohl et al. J Am Soc Nephrol 16: 3027–3037, 2005.

Relationship between systolic blood pressure and risk of kidney events¹

Composite of new-onset microalbuminuria (UACR 3.34 to 33.4 mg/mmol), new-onset macroalbuminuria (UACR >33.4 mg/mmol), doubling of serum creatinine to >200 µmol/L, or end-stage kidney disease (RRT or renal death)

But there are limitations to the impact of BP Control

67% of Canadians with diabetes have hypertension, and 40% are not controlled¹

 $G_{1}D$

Most studies have demonstrated benefits on albuminuria rather than renal function or incidence of ESRD²

 \sqrt{ig}

Again, substantial residual risk remains

RAAS Inhibition

 Trials of RAAS inhibitors in patients with T2D and albuminuria (3-30 mg/mmol) demonstrated a reduction in progression to overt nephropathy

RAAS inhibition

Considerable residual renal risk still exists with current gold standards of care

Doubling of serum creatinine, ESKD, or death

Brenner B, et al. N Engl J Med. 2001;345(12):861-869.

Lewis EJ, et al. N Eng J Med. 2001;345(12):851-860.

RAAS Inhibition has limitations (and some pts don't tolerate them)

RAAS inhibition did not seem to provide protection against cardiovascular events^{1,2}

No benefits on mortality were observed¹

While risk reductions are additive to those obtained with blood pressure control, patients with T2D and CKD remain at risk for renal and CV events

Summary

A1C control, blood pressure control, and RAAS inhibition represent a solid foundation for treatment of patients with CKD and T2D

While these are all critical components of the standard of care, there remain important unmet needs for our patients

We can improve the lives of our patients by building further upon this foundation

Changing clinical practice : The SGLT2 inhibitor story

SGLT2 inhibitors : new class of drugs

- CANA glaflozin
- DAPA glaflozin
- EMPA glaflozin

The first SGLT antagonist - Phlorizin

Phlorizin is a natural compound first isolated from the bark of apple trees by French chemists in 1835 and has been used to study diabetes and renal function for decades.

Josef von Mering 1886 – 'induced diabetes in dogs' glycosuria, thirst, weight loss

First description of co-transporter mechanism Robert Crane 1960

Hamilton, KL. Front Physiol 2013

Key SGLT2 inhibitor trials: 2015-2020

The George Institute

Participant characteristics in the key SGLT2 inhibitor trials

Study	EMPA-REG OUTCOME (n=7020)	CANVAS Program (n=10142)	DECLARE-TIMI 58 (n=17160)	CREDENCE (n=4401)	DAPA-CKD (n=4304)
Drug	Empagliflozin	Canagliflozin	Dapagliflozin	Canagliflozin	Dapagliflozin
Mean age (years)	61	63	64	63	62
Female, n (%)	2004 (29)	3633 (36)	6422 (37)	1494 (34)	1425 (33)
Median follow-up (years)	3.1	2.4	4.2	2.6	2.4
Established atherosclerotic CV disease (%)	7020 (100)	6656 (66)	(6974 (41)	2220 (50)	1610 (37)
History of heart failure, n (%)	706 (10)	1461 (14)	1724 (10)	652 (15)	468 (12)
Diabetes, n (%)	7020 (100)	10142 (100)	17160 (100)	4401 (100)	2906 (68)
eGFR, mL/min/1·73m ² , (mean)	74	76	85	56	43
eGFR <60mL/min/1·73m ² , n (%)	1819 (26)	2039 (20)	1265 (7)	2592 (59)	3850 (89)
UACR, mg/g, (median)	18	12	13	927	949
UACR >300 mg/g, n (%)	764 (11)	760 (7)	1169 (7)	4401 (100)	3859 (90)
Baseline use of RAS blockade, n (%)	5666 (81)	8116 (80)	13950 (81)	4395 (>99)	4174 (97)

Baseline kidney risk in the key SGLT2 inhibitor trials

The George Institute

Heerspink et al. NDT 2020, Fernandez-Fernandez CKJ 2020

CREDENCE Trial Canagliflozin 100 mg

Key outcomes²

*Primary composite outcome: end-stage kidney disease, doubling of serum creatinine, or renal or cardiovascular death

ACEi/ARB use **99.9%** Mean A1C **8.3%** Mean sBP **140.0 mmHg**

Jardine MJ, et al. Am J Nephrol. 2017;46(6):462-472.
 Perkovic et al. N Engl J Med. 2019; 380(24):2295-2306.

DAPA-CKD Trial Dapagliflozin 10 mg

Key outcomes^{2,3}

*Primary composite outcome: sustained decline in the estimated GFR of at least 50%, end-stage kidney disease, or death from renal or cardiovascular causes

≥18 years Dapagliflozin n=2152 Placebo n= 2152

Inclusion/Baseline Criteria¹

≥25 to ≤75 mL/min/1.73 m² eGFR

>22.6 to ≤565 mg/mmol UACR

68% with T2D

ACEi/ARB use **97%** Mean sBP **137.4 mmHg**

1. Wheeler et al. Nephrol Dial Transplant 2020;35: 1700-1711

2. Heerspink et al. N Engl J Med 2020; 383:1436-1446.

3. McMurray et al. Circulation. 2020; ePub ahead of print: 10.1161/CIRCULATIONAHA.120.051675

EMPA-KIDNEY Trial Empagliflozin 10 mg

Primary composite renal outcome*

Key secondary endpoints:

Composite of CV death or HHF

All-cause hospitalization

All-cause mortality

*Time to first occurrence of (i) kidney disease progression (defined as ESKD, a sustained decline in eGFR to <10 mL/min/1.73 m², renal death, or a sustained decline of \geq 40% in eGFR from randomization) or (ii) Cardiovascular death

SCORED Trial Sotagliflozin 200 or 400 mg

Inclusion/Baseline Criteria

≥25 to ≤60 mL/min/1.73 m² eGFR

8.4 mg/mmol Median UACR

ACEi/ARB use **88.5%** Mean A1C **8.3%** Median sBP **139 mmHg**

60

Key Outcomes

Note: Trial discontinued after 24 months of follow-up due to withdrawal of funding

*Primary composite outcome: Total number of deaths from cardiovascular causes, hospitalizations for HF, and urgent visits for HF

[†]Renal composite outcome: First occurrence of a sustained decrease of \geq 50% in the eGFR from baseline for \geq 30 days, long-term dialysis, renal transplantation, or sustained eGFR of <15 ml/min/1.73 m² for \geq 30 days

Renal Benefits of SGLT2 Inhibitors are Independent of A1C

	SGLT2i	Placebo	HR for primary outo	P-trend				
CREDENCE – Baseline A1C ¹								
<8%	115/1027	144/1029		0.77 (0.61-0.99)				
≥8%	129/1174	195/1169	— — —	0.63 (0.51-0.79)				
DAPA-CKD - P	DAPA-CKD – Presence of T2D ²							
T2D	152/1455	229/1451		0.64 (0.52-0.79)				
No T2D	45/697	83/701	_	0.50 (0.35-0.72)				
·		0.2	25 0.5 1.0	2.0	•			
$^{\prime}$ $^{\prime}$	* . /		Favours F SGLT2i p	avours lacebo				

Perkovic et al. N Engl J Med. 2019; 380(24):2295-2306.
 Heerspink et al. N Engl J Med 2020; 383:1436-1446.

Meta-analysis of renal AEs in patients with eGFR <60 mL/min/1.73 m² across 5 trials of canagliflozin, dapagliflozin, or empagliflozin

Renal Safety of SGLT2 Inhibitors in Patients with CKD

	Events (n/N)			P _{heterogeneity}			
Renal-related adverse events	394/5582		-			1.04 (0.68-1.61) 0.11
Acute kidney injury	83/4767				-	0.69 (0.45-1.06) 0.63
Hyperkalemia	220/5294					0.63 (0.48-0.83) 0.90
· · ·		0.2	0.5 Favours	1.0) F	2.0 Favours	

Effect of SGLT2 inhibitors on acute kidney injury

Study	Events	Patients		RR (95% CI)	P-heterogeneity
EMPA-REG OUTCOME	401	7010		0.76 (0.62-0.93)	
CANVAS Program	58	10142		0.66 (0.39-1.11)	
DECLARE-TIMI 58	300	17160		0.69 (0.55-0.87)	
CREDENCE	184	4397		0.85 (0.64-1.13)	
DAPA-CKD	91	4298		0.75 (0.50-1.13)	
DAPA-HF	69	4736	_	0.50 (0.30-0.82)	
EMPEROR-Reduced	113	3730		0.66 (0.45-0.96)	
Overall (p<0.0001)			\diamond	0.72 (0.65-0.81)	0.67
			0.4 0.6 0.8 1	1.4	

Favours SGLT2 inhibitor Favours placebo

Adapted from Neuen et al. Lancet Diabetes Endocrinol 2019021

Other Safety Signals

Meta-analysis of AEs in up to 10 clinical trials (including canagliflozin, dapagliflozin, empagliflozin, ertugliflozin, ipragliflozin, luseogliflozin, and sotagliflozin)

	Events (n/N)					HR/RR			P _{heterogeneity}
Hypoglycemia	1292/5052			-				1.05 (0.85-1.32)	0.03
Fracture	238/6160		-					1.01 (0.67-1.52)	0.64
Amputation	106/4246					_		1.37 (0.58-3.25)	0.04
Urinary tract infection	703/5021			+				0.97 (0.81-1.16)	0.17
Genital infection	239/5776							2.86 (2.00-4.10)	0.75
Hypovolemia	297/5192							1.48 (0.94-2.32)	0.01
Diabetic ketoacidosis	10/4784							2.16 (0.51-9.09)	0.58
		0.2 Favou SGLT	0.5 urs 2i	1.0	2.0	5.0 Favours placebo	10		

Summary – SGLT2i in T2D and CKD

SGLT2 inhibitors have demonstrated an ability to slow eGFR decline and reduce hard renal outcomes in clinical trials

Consistent benefits were also observed on hospitalization for heart failure, which have been shown in primary outcome trials on different patient populations

SGLT2 inhibitors may also provide benefits on 3-point MACE and overall survival in patients with T2D and CKD

Cardiorenal benefits are provided across a spectrum of kidney function
Does Dapagliflozin compared to placebo reduce the risk of kidney failure and CV events in CKD patients with and without T2DM?

ACEI/ARB 97%

With T2DM 67.5%

Benefit of Dapagliflozin on primary end-point was consistent in patients with and without T2DM % of patients who discontinued the drug or who experienced SAE was similar in both groups DKA, 2 in placebo group vs none in Dapagliflozin group No DKA or severe hypoglycemia in patients without T2DM

CONCLUSION: Dapagliflozin compared to placebo significantly reduced the risk of kidney failure, CV death or hospitalization for HF and all-cause mortality in patients with CKD with and without T2DM. Dapagliflozin was well-tolerated, in keeping with its established safety profile.

DAPA-CKD

Heerspink et al (2020). Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine. September 24,2020 DOI: 10.1056/NEJMoa2024816 Visual Abstract by: Ana Naidas, MD

DAPA-CKD

Dapa: Consistent benefit irrespective of diabetes status

	Events*		Events per 10	0 patient-y	ears	Hazard ratio (95% CI)	Pinteraction		Absolute change in risk (95% CI)	P interaction
	Dapagliflozin	Placebo	Dapagliflozin	Placebo						
Primary outcome										
Overall	197/2152	312/2152	4.6	7.5		0.61 (0.51–0.72)			–5·3 (–7·3 to –3·4)	
With type 2 diabetes	152/1455	229/1451	5.2	8.0		0.64 (0.52-0.79)	0·24 ⁻		-5·3 (-7·8 to -2·9)	0.98
Without diabetes	45/697	83/701	3.4	6.3	e	0.50 (0.35-0.72)	_		-5·4 (-8·4 to -2·4)	
Kidney-specific composite	outcome									
Overall	142/2152	243/2152	3.3	5.8	_ _	0.56 (0.45-0.68)			-4·7 (-6·4 to -3·0)	
With type 2 diabetes	103/1455	173/1451	3.5	6.0	_ _	0.57 (0.45-0.73)	0.57		-4·8 (-7·0 to -2·7)	0.80
Without diabetes	39/697	70/701	2.9	5.3	_	0.51 (0.34-0.75)			-4·4 (-7·2 to -1·6)	
Cardiovascular death or ho	spital admission for	heart failur	e						. , ,	
Overall	. 100/2152	138/2152	2.2	3.0	_ 	0.71 (0.55–0.92)			–1·8 (–3·1 to –0·4)	
With type 2 diabetes	85/1455	119/1451	2.7	3.8	e	0.70 (0.53-0.92)	0.78		-2·4 (-4·2 to -0·5)	0.11
Without diabetes	15/697	19/701	1.1	1.3		- 0.79 (0.40-1.55)			-0.6 (-2.2 to 1.1)	
All-cause mortality										
Overall	101/2152	146/2152	2.2	3.2	_	0.69 (0.53-0.88)			–2·1 (–3·5 to –0·7)	
With type 2 diabetes	84/1455	113/1451	2.6	3.5		0.74 (0.56-0.98)	0.25	_	-2.0 (-3.8 to -0.2)	0.85
Without diabetes	17/697	33/701	1.2	2.3 -		0.52 (0.29-0.93)			-2·3 (-4·2 to -0·3)	
				0.2	0.5 1.0	2.0	-10 -8	-6 -4 -2 0 2		
				Favours	s dapagliflozin Fav	vours placebo	Favours	dapagliflozin Fav	ours placebo	

Wheeler et al. Lancet D&E 2020

Consistent benefit irrespective of CKD etiology

	Events*		Events per 10	0 patient-years		Hazard ratio (95% CI)	Pinteraction	Absolute change in risk (95% CI)	P interaction
	Dapagliflozin	Placebo	Dapagliflozin	Placebo					
Primary outcome									
Diabetic nephropathy	139/1271	207/1239	5.4	8.5	- e -	0.63 (0.51–0.78)	0.53	-5·8 (-8·5 to -3·1)	0.37
Ischaemic or hypertensive	24/324	35/363	3.8	4.9		0.75 (0.44–1.26)		-2.2 (-6.4 to 1.9)	
Glomerulonephritis	22/343	49/352	3.4	7.5 _		0.43 (0.26-0.71)		-7.5 (-12.0 to -3.1)	
Other or unknown	12/214	21/198	2.9	5.5	-	0.58 (0.29-1.19)		-5.0 (-10.3 to 0.3)	
Kidney-specific composite c	outcome				-	- (/		- 、 /	
Diabetic nephropathy	93/1271	157/1239	3.6	6.4	_ _	0.55 (0.43-0.71)	0.67 —	–5·4 (–7·7 to –3·0)	0.16
Ischaemic or hypertensive	18/324	26/363	2.8	3.7		0.74 (0.4-1.36)		-1.6 (-5.2 to -2.0)	
Glomerulonephritis	21/343	46/352	3.3	7.0 _		0.43 (0.26-0.72)		-6·9 (-11·3 to -2·6)	
Other or unknown	10/214	14/198	2.5	3.7		0.81 (0.35-1.83)		-2.4 (-7.0 to -2.2)	
Cardiovascular death or hos	pital admission f	or heart failu	re			<pre></pre>	_		
Diabetic nephropathy	76/1271	107/1239	2.7	4.0		0.67 (0.50–0.90)	0.24	–2·7 (–4·7 to –0·6)	0.19
Ischaemic or hypertensive	17/324	15/363	2.5	2.0		1.29 (0.64-2.60)		-1.1(-2.1 to 4.3)	-
Glomerulonephritis	3/343	7/352	0.4	1.0		0.48 (0.12-1.84)		-1.1 (-2.9 to 0.6)	
Other or unknown	4/214	9/198	0.9	2.2		0.39 (0.12-1.28)		-2.7 (-6.1 to 0.7)	
All-cause mortality							-		
Diabetic nephropathy	78/1271	104/1239	2.7	3.8		0.72 (0.54–0.97)	0.55	-2·3 (-4·3 to -0·2)	0.99
Ischaemic or hypertensive	14/324	22/363	2.0	2.8		0.70 (0.36-1.37)		-1.7 (-5.0 to 1.6)	
Glomerulonephritis	3/343	11/352	0.4	1.5	•	0.31 (0.09–1.13)		-2·3 (-4·3 to -0·2)	
Other or unknown	6/214	9/198	1.3	2.2		0.57 (0.20–1.61)		-1.7 (-5.4 to 1.9)	
				0.1	0.5 1.0 2.0 3	ך }∙0	-12-10 -8 -6 -4 -2 0 2	4 6	
				Favours dap	∢ agliflozin Favours	s placebo	Favours dapagliflozin Fav	ours placebo	

Wheeler et al. Lancet D&E 2020

DAPA-CKD: safety results

Safety outcomes, n (%)	Dapagliflozin N=2149	Placebo N=2149
Discontinuation of study drug	274 (12.8)	309 (14.4)
Discontinuation due to adverse event	118 (5.5)	123 (5.7)
Any serious adverse event	633 (29.5)	729 (33.9)
Adverse events of interest		
Amputation	35 (1.6)	39 (1.8)
DKA	0	2 (0.1)
Fracture	85 (4.0)	69 (3.2)
Renal-related adverse event	155 (7.2)	188 (8.7)
Major hypoglycemia	14 (0.7)	28 (1.3)
Volume depletion	127 (5.9)	90 (4.2)
Serious adverse event of volume depletion	22 (1.0)	18 (0.8)

Effect of SGLT2 inhibition on kidney failure

The George Institute

Adapted from Neuen et al. Lancet Diabetes Endocrinol 2019

SGLT2 inhibitors and kidney protection - with and without diabetes

Study	Events	Patients		HR (95% CI)
Diabetes				
EMPA-REG OUTCOME	152	6968	B	0.54 (0.40-0.75)
CANVAS Program	249	10142		0.60 (0.47-0.77)
DECLARE-TIMI 58	365	17160		0.53 (0.43-0.66)
CREDENCE	377	4401		0.66 (0.53-0.81)
DAPA-HF	42	2139		0.73 (0.39-1.34)
VERTIS-CV	283	8246		0.81 (0.63-1.04)
DAPA-CKD	276	2906		0.57 (0.45-0.73)
EMPEROR-Reduced	61	1856		0.42 (0.19-0.97)
Subtotal (p<0.0001)				0.61 (0.56-0.67)
No diabetes				
DAPA-HF	25	2605		0.67 (0.30-1.49)
DAPA-CKD	109	1398	B	0.51 (0.34-0.75)
EMPEROR-Reduced	27	1874		0.53 (0.31-0.90)
Subtotal (p<0.0001)				0.54 (0.40-0.72)
Overall (p<0.0001)			\diamond	0.60 (0.55-0.66)
Heterogeneity betweer	n subgrou	ps P=0.44		2
ge Institute Polloo	ck & Neuen		Favors SGLT2 inhibitor Favor	ors placebo

ACKD 2021 (accepted)

Do SGLT2i work at lower eGFR values?

In DAPA-CKD, dapagliflozin reduced the risk of the primary outcome regardless of CKD stage

	Dapagliflozin	Placebo	Dapaglifloz	in Placebo			
	No. of parti total r	icipants/ no.	Events/ 100 patient-years			Hazard ratio (95% Cl)	<i>P</i> value for Interaction
Primary outcome: ≥	50% eGFR decline	, ESKD, kid	ney or CV dea	ath			
Overall	197/2152	312/2152	4.6	7.5		0.61 (0.51, 0.72)	
Stage 4	59/293	87/331	11.1	14.9	⊢● −1	0.73 (0.53, 1.02)	0.22
Stage 2/3	138/1859	225/1821	3.7	6.2	⊢-●1	0.58 (0.47, 0.71)	
ESKD							
Overall	109/2152	161/2152	2.5	3.8		0.64 (0.50, 0.82)	
Stage 4	49/293	72/331	9.2	12.4		0.72 (0.50, 1.04)	0.64
Stage 2/3	60/1859	89/1821	1.6	2.4	⊢	0.64 (0.46, 0.89)	
All-cause death							
Overall	101/2152	146/2152	2.2	3.1	⊢ ⊸∎	0.69 (0.53, 0.88)	
Stage 4	19/293	31/331	3.0	4.6		0.68 (0.39, 1.21)	0.95
Stage 2/3	82/1859	115/1821	2.0	2.9	⊢−●−− 1 [°]	0.69 (0.52, 0.92)	
				0.2	0.5 1 2	3	
CI. confidence interval: CKE). chronic kidnev disease: C\	√. cardiovascular	eGFR. estimated a	lomerular 🕞	andiflazin Rottor Dissols		

CI, confidence interval; CKD, chronic kidney disease; CV, cardiovascular; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease

Dapagliflozin Better Placebo Better

In DAPA-CKD, dapagliflozin slowed eGFR decline in patients with Stage 4 CKD

Between slope difference (SE) ^a	CKD stage 4	CKD stage 2/3
Acute, mL/min/1.73 m ² /2 weeks	-1.4 (0.5)	-2.6 (0.2)
Chronic, mL/min/1.73 m ² /year	1.8 (0.4)	1.9 (0.2)
Total, mL/min/1.73 m ² /year	1.2 (0.4)	0.9 (0.2)

Dapagliflozin vs placebo

CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; SE, standard error

Impact of Cana on eGFR Slope by eGFR

M Jardine, JASN, 2020. 31(5): 1128–1139 1139

Effects of Canagliflozin on eGFR in Participants with Baseline eGFR <30 mL/min/1.73 m²

[†]Measured from Week 3 until the end of the study.

Back to CV diseaseCV Limitations of RAAS Inhibition

Meta-analysis of ACEi/ARB trials showed little or no CV benefit in patients with T2D and relatively advanced CKD

• Included IDNT, RENAAL, and ADVANCE

CV Benefits of SGLT2i in CKD

CREDENCE¹

DAPA-CKD^{2,3}

1. Perkovic et al. N Engl J Med. 2019; 380(24):2295-2306.

2. Heerspink et al. N Engl J Med 2020; 383:1436-1446.

49 3. McMurray et al. Circulation. 2020; ePub ahead of print: 10.1161/CIRCULATIONAHA.120.051675

Cardiorenal Benefits of SGLT2 Inhibitors Extend Across a Spectrum of Renal Function

Integrated analysis of CANVAS Program and CREDENCE data – Composite of hospitalization for heart failure, nonfatal MI, nonfatal stroke, doubling of serum creatinine, kidney failure, CV/renal death

Events CANA **Placebo** Hazard Ratio (95%CI) P-trend eGFR (mL/min/1.73 m²) 0.0067 ≥90 172/2026 112/1545 0.97 (0.76-1.23) 75 to <90 177/1440 0.81 (0.66-0.99) 217/1897 0.81 (0.67-0.98) 60 to <75 237/1783 212/1458 45 to <60 0.71 (0.59-0.86) 204/1310 240/1182 0.66 (0.55-0.79) <45 275/920 205/943 UACR (mg/mmol) 0.057 0.81 (0.69-0.94) <3.39 380/4028 292/3010 0.92 (0.74-1.13) 3.4 to 34 149/1189 210/1573 0.72 (0.62-0.84) >34 to 249 294/1882 361/1799 0.69 (0.56-0.86) >249 145/459 211/494 0.77 (0.70-0.84) Overall 1035/7997 1016/6546 0.4 0.6 0.8 1.0 1.4

CANA: Canagliflozin

Favours canaglilfozin

Favours placebo

SGLT2 Inhibition in Decompensated Heart Failure SOLOIST Trial (Sotagliflozin 200 or 400 mg)

51 Bhatt et al. N Engl J Med. 2021;384(2):117-128

Canadian Heart Failure Society practical guide to SGLT2 initiation

Canadian Heart Failure Society Société canadienne d'insuffisance cardiaque

It can't all be good....a deeper dive into side effects

Fracture

	SGLT2i (%)	Placebo (%)	Hazard Ratio/Risk difference (v Pbo)	P value
CREDENCE* n=4,401	1.18	1.21	0.98 (0.70, 1.37)	-
EMPA-REG* [‡] eGFR<60ml/min: n=1,819	2.0	2.3	-	-
EMPA-REG* [‡] eGFR≥60ml/min: n=5,199	1.4	1.4	-	-
CANVAS‡ n=10,142	1.54	1.19	1.26 (1.04, 1.52)	0.02
DECLARE n=17,143	5.3	5.1	1.04 (0.91, 1.18)	0.59
VERTIS CV [‡] n=8,238	3.7	3.6	-	-
EMPEROR Reduced n=3,726	2.4	2.3	-	-
DAPA-HF n=4,744	2.1	2.1	-	1.00
DAPA-CKD n=4,298 <u>Low and high dose SGLT2 arms combined</u>	3.2	4.0	-	0.22

* rates/100 pt years

Perkovic *NEJM* 2020 Neal *NEJM* 2017 Cannon NEJM 2020 Packer NEJM, 2020 Heerspink *NEJM* 2020 Wanner *NEJM* 2016 Zinman *NEJM* 2015 Wiviott *NEJM* 2019VERTIS CV, ADA 20020Murray *NEJM* 2019 C Arnott. *JAMA* 2020 Inzucchi, *Diabetes Care* 2018; 41(1): e4-e5

[‡]Low and high dose SGLT2 arms combined. § Risk difference is for SGLT2i v pbo

Perkovic *NEJM* 2020 Neal *NEJM* 2017 Cannon NEJM 2020 Packer NEJM, 2020 Heerspink *NEJM* 2020 Zinman *NEJM* 2015 Wiviott *NEJM* 2019VERTIS CV, ADA 2020Murray *NEJM* 2019 C Arnott. *JAMA* 2020

Inzucchi, <i>Diabetes Care</i> 2018;	41(1): e4-e5
--------------------------------------	--------------

	SGLT2i (%)	Placebo (%)	Hazard Ratio/Risk difference (v Pbo)	P value
CREDENCE* n=4,401	1.23	1.12	1.11 (0.79, 1.56)	-
EMPA-REG [‡] N=7,020	1.9	1.8	1.01 (0.70, 1.44)	-
CANVAS [‡] n=10,142	0.063	0.034	1.97 (1.41, 2.75)	<0.00 1
DECLARE n=17,143	1.4	1.3	1.09 (0.84, 1.40)	0.53
VERTIS CV ^{‡§} n=8,238	2.0	1.6	-	-
EMPEROR Reduced n=3,726	0.7	0.5	-	-
DAPA-HF n=4,744	0.5	0.5		1.00
DAPA-CKD n=4,298	1.6	1.8		0.73

Amputation

Volume depletion

	SGLT2i (%)	Placebo (%)	Hazard Ratio	P value
CREDENCE n=4,401	2.84	2.35	1.25 (0.97-1.59)	-
EMPA-REG [‡] eGFR<60ml/min: n=1,819	2.8	3.6	-	
EMPA-REG* [‡] eGFR≥60ml/min: n=5,199	1.8	1.6		
CANVAS* n=4,330	2.60	1.85	-	0.009
DECLARE n=17,143	2.5	2.4	1.00 (0.83, 1.21)	p=0.9 9
VERTIS CV [‡] n=8,238	4.3	3.9	-	NS
EMPEROR Reduced n=3,726	10.6	9.9	-	-
DAPA-HF n=4,744	7.5	6.8	-	0.40
DAPA-CKD n=4,298	5.9	4.2	-	0.01

[‡]Low and high dose SGLT2 arms combined.

* rates/100 pt years, collected from CANVAS alone

Perkovic *NEJM* 2020 Neal *NEJM* 2017 Cannon NEJM 2020 Packer NEJM, 2020 Heerspink *NEJM* 2020 Wanner *NEJM* 2016 Zinman *NEJM* 2015 Wiviott *NEJM* 2019VERTIS CV, ADA 2020Murray *NEJM* 2019 CArnott. *JAMA* 2020 Inzucchi, *Diabetes Care* 2018; 41(1): e4-e5

Urinary Tract Infections

	SGLT2i (%)	Placebo (%)	Hazard Ratio/Risk difference (v Pbo)	P value
CREDENCE n=4,401	4.86	4.51	1.08 (0.90-1.29)	-
EMPA-REG* [‡] eGFR<60ml/min: n=1,819	11.0	10.4	-	-
EMPA-REG* [‡] eGFR≥60ml/min: n=5,199	6.9	7.5	-	-
CANVAS* n=4,330	4.0	3.7	-	0.38
DECLARE n=17,143	1.5	1.6	0.93 (0.73-1.18)	0.54
VERTIS CV ^{‡§} n=8,238	12.1	10.2	-	<0.05
EMPEROR Reduced n=3,726	4.9	4.5	-	-
DAPA-HF n=4,744	0.5	0.7	-	-
DAPA-CKD n=4,298	0.9	0.7	-	-

[‡]Low and high dose SGLT2 arms combined.

* rates/100 pt years, collected from CANVAS alone

Perkovic *NEJM* 2020 Neal *NEJM* 2017 Cannon NEJM 2020 Packer NEJM, 2020 Heerspink *NEJM* 2020 Wanner *NEJM* 2016 Zinman *NEJM* 2015 Wiviott *NEJM* 2019VERTIS CV, ADA 2020Murray *NEJM* 2019 C Arnott. *JAMA* 2020 Inzucchi, *Diabetes Care* 2018; 41(1): e4-e5

Genital Mycotic Infections

	SGLT2i (%)	Placebo (%)	Hazard Ratio/Risk difference (v Pbo)	P value
CREDENCE male n=2907	0.84	0.09	9.30 (2.83-30.60)	-
CREDENCE female n=1494	0.13	0.06	2.10 (1.00-4.45)	-
EMPA-REG* [‡] male n=5016	5.0	1.5		<0.001
EMPA-REG* [‡] female n=2004	10.0	2.6		<0.001
CANVAS female* n=4,330	6.88	1.75		<0.001
DECLARE n=17,143	0.9	0.1	8.36 (4.19-16.68)	<0.001
VERTIS CV [‡] male n=5,769	4.4/5.1	1.2	-	<0.001
VERTIS CV [‡] female n=2,477	6.0/7.8	2.4	-	<0.001
EMPEROR Reduced n=3,726	1.7	0.6	-	-
DAPA-HF n=4,744	NR	NR	-	-
DAPA-CKD n=4,298	NR	NR	-	-

* rates/100 pt years, collected from CANVAS alone

.

Perkovic *NEJM* 2020 Neal *NEJM* 2017 Cannon NEJM 2020 Packer NEJM, 2020 Heerspink *NEJM* 2020 Zinman *NEJM* 2015 Wiviott *NEJM* 2019VERTIS CV, ADA 2020Murray *NEJM* 2019 C Arnott. *JAMA* 2020

Inzucchi, Diabetes Care 2018; 41(1): e4-e5

Genital mycotic infections by eGFR

	Men N (%)	Women N (%)	Total	Serious % of total
Genital mycotic infections	31 (1.1%)	32 (2.1%)	91	0

	Total	CANA	Placebo	HR (95%CI)
Participants with GMIs	63	50	13	3.83 (2.08, 7.06)
Drug continued	56 (89%)	43	13	
Subsequent GMI	17	13 (30.2%)	4 (30.8%)	

Amy Kang: ePoster #: PO1004 Session Title: Diabetic Kidney Disease: Clinical - 2 Session Release Date, Time: Thursday, October 22, 10:00 a.m. EDT

The Facts

SGLT2i improve outcomes in patients with DM and patients with CKD and those with established Heart disease (and all combinations)

- Kidney outcomes
- CV outcomes
- Heart Failure

Multiple RCTs concordant > 20, 000 pts!!

Biological plausibility and mechanisms

Identifiable patient profiles

This appears to be independent of hypoglycemic effects

There is no increased incidence of AKI

The effects appear to be across increasing categories of eGFR and uACR values in populations studied to date

The effects appear to be strong irrespective of ACEi /ARB use

Studies designed all used fixed dose of SGLT2i

KDIGO 2020 Guidelines for Diabetes Management in CKD

- All patients with T2D and CKD should receive:
 - Glycemic control
 - Blood pressure control
 - Lipid management
 - Lifestyle counseling
- Most patients with T2D and CKD should receive:
 - ACEi or ARB
 - SGLT2 inhibitors

Diabetes Canada Pharmacologic Glycemic Management of Type 2 Diabetes in Adults: 2020 Update

SGLT2i : contextualizing the evidence into clinical practice What I did before: Care of CKD **Patients**

BP control

Glycemic control

Anti-proteinuric agents (RAS blockade)

Multisciplinary care team

- Nurse, Dietician, Social Worker
- Pharmacist

Regular bloodwork and urine ACR

Regular intervals assessment

- Education
- Navigation
- Surveillance

And lots of fiddling.....

- Blood pressure :RAAS inhibition, B-blockers, diuretics, MRA, CCB.....
- AKI risk and management:
 - Increasing recognition of impact on trajectory and variability
 - Nephrotoxins (NSAID, AGs), ECFV contraction, procedures (dye and other)
- Protein intake
- Salt intake
- Focus on Hyperuricemia
- Calcium, Phosphate, iPTH measurement
- Life style
- CV Risk reduction: Lipid lowering

And where did this get us?

For people with diabetes... little improvement in the rate of kidney failure (ESRD)

- Rates of the other major complications in diabetes have declined
- Rates of ESRD have actually increased among older adults

ESRD, end-stage renal disease; MI: myocardial infarction.Adapted from: Gregg EW, et al. N Engl J Med 2014;370:1514-23.

SGLT2 Inhibitors: Primary Kidney Outcome Trials Fixed dose, no targets, on top of best current care, international

The cardiovascular outcome trials are indicated in the circles and positioned based on their mean eGFR and median UACR

CREDENCE: Perkovic et al. *N Engl J Med* 2019, 380: 2295-2306 **DAPA-CKD**: Heerspink et al. *N Engl J Med*. 2020; 383: 1436-1446 **EMPA-KIDNEY**: Ongoing; Herrington WG, et al. *Clin Kidney J*. 2018; 11:749-761. Courtesy of Dr. Peter Rossing

SGLT2 Inhibitors: Evidence Summary of Cardiovascular and Kidney Benefits

b Hospitalisation for heart failure or cardiovascular death a Kidney outcome HR (95% CI) Study ID Study ID HR (95% CI) No diabetes No diabetes DAPA-HF DAPA-HF 0.67 (0.30-1.49) 0.73 (0.60-0.89) **EMPEROR-Reduced** EMPEROR-Reduced 0.42 (0.19-0.97) 0.78 (0.64-0.97) DAPA-CKD Subtotal ($I^2 = 0.0\%$, P = 0.650) 0.50 (0.35-0.72) 0.75 (0.65-0.87) Subtotal ($I^2 = 0.0\%$, P = 0.714) 0.51 (0.38-0.69) Diabetes Diabetes DAPA-HF DAPA-HF 0.73(0.39 - 1.34)0.75 (0.63-0.90) EMPEROR-Reduced 0.53 (0.31-0.90) EMPEROR-Reduced 0.72 (0.60-0.87) DAPA-CKD 0.64 (0.52-0.79) CANVAS 0.78 (0.67-0.91) CANVAS CREDENCE 0.60 (0.47-0.77) 0.69 (0.57-0.83) CREDENCE 0.66 (0.53-0.81) EMPA-Reg 0.66 (0.55-0.79) EMPA-Req 0.54 (0.40-0.75) DECLARE-TIMI 0.83 (0.73-0.95) DECLARE-TIMI VERTIS-CV 0.53 (0.43-0.66) 0.88(0.75 - 1.03)VERTIS-CV SCORED 0.81(0.63 - 1.04)0.77 (0.66-0.91) SCORED SOLOIST 0.71(0.46 - 1.08)0.68(0.53 - 0.88)Subtotal ($I^2 = 6.6\%$, P = 0.380) 0.63 (0.57-0.69) Subtotal ($I^2 = 16.1\%$, P = 0.299) 0.76(0.72 - 0.81)Overall ($I^2 = 0.0\%$, P = 0.450) 0.62 (0.57-0.67) Overall ($I^2 = 0.0\%$, P = 0.461) 0.76 (0.72-0.80) 0.5 2 0.5

Kang A & Jardine M. Nat Rev Nephrol. 17: 83-84, 2021

SGLT2 inhibitors slow the rate of eGFR decline: Hypothetical importance of chronic eGFR slope difference

Projections are based on eGFR slopes from week 3 to end of treatment (chronic phase) and assume linear progression of eGFR decline

Calculated as [(eGFR at start of chronic phase – 10 mL/min/1.73 m²) / chronic eGFR slope]

eGFR at start of chronic phase (3-w eek time point): Canagliflozin 100 mg/SOC 52.28 mL/min/1.73 m2, Placebo/SOC 55.45 mL/min/1.73 m2 Figure adapted from: Durkin & Blais. Diabetes Ther. 2020 Dec 18. doi: 10.1007/s13300-020-00953-4.

- 1. Perkovic et al. N Engl J Med. 2019; 380(24):2295-2306.
- 2. Beaudry et al. Clin J Am Soc Nephrol. 2018;13(8):1197-1203.

SGLT2 inhibitors So many ways to improve outcomes

.

Mechanisms of Action of SGLT2 Inhibitors on hearts and kidneys

Changing clinical practice : The SGLT2 inhibitor story

Translating improved understanding to clinical practice

Identify patients who are likely to benefit most from an SGLT2 inhibitor Facilitate initiation of an SGLT2 inhibitor where appropriate Optimize therapy for CKD by incorporating an SGLT2 inhibitor with other kidney-protective agents where appropriate Discussion

CKD, chronic kidney disease; SGLT2, sodium–glucose co-transporter 2