Symptom management in dialysis: Novel interventions and the emerging role of cannabinoids

> Nephrology Rounds University of British Columbia June 12, 2020

Dr. David Collister, MD, PhD(c), FRCPC

Clinical Scholar, McMaster University

Research Fellow, Population Health Research Institute

Objectives

- Review the following symptoms in dialysis including the diagnosis, measurement and treatment of:
 - restless legs syndrome
 - pruritus
 - depression
 - chronic pain
- Describe the role of cannabinoids for uremic symptoms in dialysis
 - patient and physician surveys
 - PK study
 - DISCO-POT
 - other future trials

Symptoms on dialysis

Figure 1. Weighted mean prevalence of symptoms (%) in ESRD (weighted by size of study).

Murtagh FE et al. ACKD 2007 14(1):82-89

Illness trajectory

Grubbs et al. CJASN 2014; 9:2203-2209

Figure 1. | As the patient nears the end of life (dashed arrow), there is an increasing focus on symptom control and patient goals of care and a shift in the approach to dialysis care from conventional to palliative. Adapted from Institute of Medicine (59).

Research priorities

vascular access MBD modality pruritus timing of initiation of RRT QOL adequacy phosphate restriction cramping drugs "How much dialysis do I need?" "I'm itchy" "I'm tired" "I want to go on vacation" "I can't sleep" "I'm depressed" "Should I be exercising?" How do I prevent my kidney disease from getting any worse?" "My legs are cramping" "I can't stop moving my legs"

Manns et al. CJASN 2014 9(10):1813-1821

Restless legs syndrome

- 5-10% of population, 2-3% clinically significant symptoms
- pathophysiology
 - central nervous system = iron deficiency, dopaminergic pathways
 - peripheral nervous system = neuropathy
- primary = genetic
- secondary = iron deficiency, CKD/ESRD, neuropathy, spinal cord pathology, pregnancy, MS, PD, essential tremor
- association with periodic limb movement syndrome, CV disease, sleep disturbance, poor HRQOL
- screening questions
- disease specific rating scales = IRLS, RLS-6, RLS-QOL
- clinically = patient global impression

Muth et al. JAMA. 2017;317(7):780

2012 revised IRLSSG diagnostic criteria

- (1) An urge to move the legs usually but not always accompanied by or felt to be caused by uncomfortable and unpleasant sensations in the legs.
- (2) The urge to move the legs **and** any accompanying unpleasant sensations begin or worsen during periods of rest or inactivity such as lying down or sitting.
- (3) The urge to move the legs **and** any accompanying unpleasant sensations are partially or totally relieved by movement, such as walking or stretching, at least as long as the activity continues.
- (4) The urge to move the legs and any unaccompanying unpleasant sensations during rest or inactivity only occur or are worse in the evening or night during the day
- (5) The occurrences of the above features is not solely accounted for as symptoms primary to another medical or behavioral condition (e.g. myalgia, venous stasis, leg edema, arthritis, leg cramps, positional discomfort, habitual foot tapping)

Allen et al. Sleep Medicine 15 (2014) 860–873

http://irlssg.org/diagnostic-criteria/

Screening questions for RLS

Collister et al. Clin Kidney J. 2018 Dec 24;12(4):559-56

1) Single question SN: 0.86, SP: 0.58 with AUROC 0.72 "When you try to relax in the evening or sleep at night, do you ever have unpleasant, restless feelings in your legs that can be relieved by walking or movement?"

2) ROC curve of ESAS-r RLS and the revised 2012 IRLSSG diagnostic criteria Note: SN 0.79, SP 0.56 AUROC 0.65 for ESAS-r RLS>1 **3)** ROC curve of **IRLS** and the revised 2012 IRLSSG diagnostic criteria Note: SN 0.71, SP 0.81, AUROC 0.75 for IRLS<u>></u>20

1. Overall, how would	you rate the RLS discomfor	t in you legs or arms?
-----------------------	----------------------------	------------------------

1.	Overall, how would you rate the <u>RLS discomfort in you legs or arms</u> ?
	(4) Very severe
	(3) Severe
	(2) Moderate
	(1) Mild
	(0) None
2.	Overall, how would you rate the need to move around because of your RLS symptoms?
	(4) Very severe
	(3) Severe
	(2) Moderate
	(1) Mild
	(0) None
3.	Overall, how much relief of your RLS arm or leg discomfort do you get from moving around?

(4) No relief (3) Slight relief (2) Moderate relief (1) Either complete or almost complete relief (0) No RLS symptoms and therefore question does not apply

4. Overall, how severe is your sleep disturbance from your RLS symptoms?

(4) Very severe (3) Severe (2) Moderate (1) Mild (0) None

5. How severe is your tiredness or sleepiness from your RLS symptoms?

(4) Very severe (3) Severe (2) Moderate (1) Mild (0) None

(3) Severe (This means 4 to 5 days a week.) (2) Moderate (This means 2 to 3 days a week.) (1) Mild (This means 1 day a week or less.) (0) None 8. When you have RLS symptoms, how severe are they on an average day? (4) Very severe (This means 8 hours per 24 hour day or more.) (3) Severe (This means 3 to 8 hours per 24 hour day.) (2) Moderate (This means 1 to 3 hours per 24 hour day.) (1) Mild (This means less than 1 hour per 24 hour day.) (0) None 9. Overall, how severe is the impact of your RLS symptoms on your ability to carry out your daily affairs, for example carrying out a satisfactory family, home, social, school, or work life?

(4) Very severe (This means 6 to 7 days a week.)

6. Overall, how severe is your RLS as a whole?

7. How often do you get RLS symptoms?

(4) Very severe (3) Severe (2) Moderate

(1) Mild (0) None

(4) Very severe (3) Severe (2) Moderate (1) Mild (0) None

10. How severe is your mood disturbance from your RLS symptoms-for example angry, depressed, sad, anxious, or irritable?

(4) Very severe (3) Severe (2) Moderate (1) Mild (0) None

RLS-6 rating scales.

Please, evaluate the following questions for the last 7 days or nights respectively:

How satisfied are you with yo completely satisfied	our sleep during the	e last 7 nigh	ts?							completely dissatisfied
0	1	2	3	4	5	6	7	8	9	10
How severe were your RLS sy At falling asleep	mptoms during the	last 7 nigh	ts or days re	espectively	in the follow	ving situati	ons?			
none	very mild									very severe
0 During the night	1	2	3	4	5	6	7	8	9	10
none	very mild									very severe
0	1	2	3	4	5	6	7	8	9	10
During the day when you v	vere at rest (sitting,	lying)								
none	very mild									very severe
0	1	2	3	4	5	6	7	8	9	10
During the day when you v	vere not at rest but e	engaged in	activities (w	alking, acti	vities in yo	ur job, hom	ework, leisı	are activitie	s)	
none	very mild									very severe
0	1	2	S	4	5	6	7	8	9	10
How tired or sleepy were you	a during the day (be	tween getti	ng up in the	e morning a	and bedtime	e in the eve	ning) withii	n the last 7	days?	
not at all	very mild									very severe
0	1	2	3	4	5	6	7	8	9	10

Measuring RLS: IRLS, RLS-6, RLS-QOL

Appendix: RLS Quality of Life Questionnaire

The following	are some question	s on how your Res	tless Legs Syndrome n	night affect your quality of lif
Answer each o	f the items below in	relation to your lif	fe experience in the pas	t 4 weeks. Please mark only or
answer for eac	h question.			
In the past for	ir weeks:			
1. How distre	ssing to you were y	our restless legs?		
🗆 Not at all	A little	Some	Quite a bit	□ A lot
2. How often	in the past 4 weeks	did your restless l	egs disrupt your routin	ne evening activities?
Never	□ A few times	Sometimes	□ Most of the time	□ All the time
3. How often	in the past 4 weeks	did restless legs ke	eep you from attending	g your evening social activities
Never	□ A few times	Sometimes	Most of the time	□ All the time
4. In the past	4 weeks how much	trouble did you ha	ave getting up in the m	norning due to restless legs?
□ None	A little	□ Some	Quite a bit	□ A lot
5. In the past 4	weeks how often v	vere you late for wo	ork or your first appoin	tments of the day due to restle
legs?				
□ Never	A few times	Sometimes	Most of the time	All the time
6. How many	days in the past 4	weeks were you lat	e for work or your first	appointments of the day due
restless legs?				
Write in numb	er of days: 🗆			
7. How often	in the past 4 weeks	did you have trou	ble concentrating in th	ne afternoon?
Never	□ A few times	Sometimes	□ Most of the time	□ All the time
8. How often	in the past 4 weeks	did you have trou	ble concentrating in th	ne evening?
Never	□ A few times	Sometimes	□ Most of the time	□ All the time
9. In the past	4 weeks how much	was your ability t	o make good decisions	affected by sleep problems?
□ None	A little	□ Some	Quite a bit	□ A lot
10. How often	in the past 4 weeks	s would you have a	voided traveling when	the trip would have lasted mo
than two hour	s?		-	-
Never	A few times	Sometimes	□ Most of the time	□ All the time
11. In the past	4 weeks how muc	h interest did you	have in sexual activity?	?
□ None	□ A little	□ Some	Quite a bit	□ A lot
□ Prefer not t	o answer		-	
12. How much	h did restless legs d	isturb or reduce yo	our sexual activities?	
None	□ A little	□ Some	Quite a bit	□ A lot
□ Prefer not t	o answer			
13. In the past	4 weeks how much	did your restless le	gs disturb your ability t	to carry out your daily activitie
for example ca	arrying out a satisfa	actory family, home	e, social, school or wor	rk life?
Not at all	□ A little	Some	Quite a bit	□ A lot
14. Do you cu	rrently work full o	r part time (paid w	ork, unpaid or volunt	eer)?
(mark one boy	c)			
YES If Yes	please answer ques	tions #15 through	#18	
□ NO, becau	se of my RLS - Ple	ase go to the next	page	
□ NO, due to	other reasons - Pl	ease go to the next	page	
15. How ofter	1 did restless legs m	ake it difficult for	you to work a full day	in the past 4 weeks?
Never	A few times	Sometimes	Most of the time	□ All the time
16. How man	y days in the past 4	weeks did you wo	ork less than you would	d like due to restless legs?
Write in numb	er of days: $\Box \Box$			
17. On the av	erage, how many h	ours did you work	in the past 4 weeks?	
Write in numb	er of hours per day	y: 🗆 🗆	-	
18. On days ye	ou worked less than	you would like, or	average about how ma	any hours less did you work d
to your restles	s legs.			
Write in numb	er of hours per day	v- □□		

ORN symptom management guide for RLS

https://www.ontariorenalnetwork.ca/ en/kidney-care-resources/clinical-tools/ symptom-management

Gopaluni et al. Cochrane 2016, 11, CD010690

Restless Legs Syndrome (RLS) Algorithm in Hemodialysis Patients

Assessment

Timing (especially at night or during dialysis), alleviating and exacerbating factors (e.g., movement, after dialysis, drugs), quality of discomfort (e.g., pain, pulling, itching, need to move, pins and needles, cramping etc.), and effect on sleep or other symptoms (e.g., anxiety and depression).

Non-Pharmacologic Measures

- Discontinue or reduce offending drug, if feasible
- Correct iron deficiency may prevent initial augmentation with dopaminergic therapy
- Encourage good sleep hygiene
- Stretching, massage, or exercise (including intradialytic exercise)
- Hot/cold water or towel
- Distracting attention (e.g., with puzzles)
- Limit caffeine/alcohol
- Smoking cessation

Refer to the Ontario Renal Network Restless Legs Syndrome Patient Self-Management Guide for more information.

Consider Etiology

- Rule out mimic disorders
 - Movement disorders: akathisia, ADHD
 - Restlessness secondary to anxiety, depression, psychotic disorders
 - Local leg pathology (e.g., peripheral neuropathy, myelopathy, peripheral venous congestion, pruritus, cramps)
 - Positional discomfort
- Rule out drug-induced RLS
 - Dopamine antagonists (e.g., haloperidol, olanzapine, risperidone, metoclopramide, promethazine)
 - Antidepressants: Mirtazapine (up to 28%) or SSRI or SNRIs (<5%) (e.g., citalopram, escitalopram, fluoxetine, paroxetine, sertraline, duloxetine, venlafaxine)
 - Stimulants: alcohol, caffeine, nicotine
 - Others: TCAs, carbamazepine, lithium
- Assess risk/contributing factors
 - Iron deficiency
 - Sleep deprivation
 - Positive family history
 - Rheumatoid arthritis or Sjogren's
 - Pregnancy

Pharmacologic Options

(If RLS symptoms occur during HD, give medication prior to HD)

AVOID opioids and quinine

- For intermittent RLS, levodopa/carbidopa (Sinemet)* 100/25 mg tablet ½ tablet PO HS⁺, titrate Q3-7 days to effect up to 200/50 mg PO HS⁺. If patient awakens in middle of the night with RLS, use CR formulation (levodopa doses ≥200 mg may increase risk of augmentation – see dopamine agonists below for definition).
- For daily RLS, dopamine agonists
 - Compared to levodopa, has decreased risk of augmentation (i.e., paradoxical increase in RLS symptoms caused by medication) but increased incidence of hypotension and nausea. If augmentation occurs, consider reducing dose, splitting dose, or trying rotigotine. Caution with rotigotine re: narcolepsy (driving is not recommended).
 - Ropinirole* 0.25 mg PO 2 hours prior to HS¹; increase by 0.25 mg PO Q7 days to effect up to a maximum of 4 mg/day
 - Pramipexole* 0.125 mg PO 2 hours prior to HS¹; may increase by 0.125 mg PO Q7 days to effect up to a maximum of 0.75 mg/day
- · If ineffective with dopaminergic agent or RLS with painful neuropathy:
 - Gabapentin* 100 mg PO HS⁺; titrate by 100 mg Q7 days to a maximum of 300 mg PO HS⁺
 - Pregabalin* 25 mg PO HS¹; titrate by 25 mg Q7 days to a maximum of 75 mg PO HS¹

INADEQUATE CONTROL

- Benzodiazepines
 - Preferably avoid secondary to potential for dependency, questionable efficacy and adverse effects due to clonazepam's
 long half-life. If severe insomnia, refer to Insomnia Treatment Algorithm. Use with caution in the elderly.
 - Clonazepam* 0.5 mg PO HS⁺, titrate by 0.5 mg Q7 days to a maximum of 2 mg PO HS
- Clonidine* 0.05 mg PO HS if patient is not hypotensive or bradycardic

The risks of alpha 2 delta ligands in hemodialysis

	Gabapentin N=26916 %	Pregabalin N=5829, %
Neuropathic pain	65	69
Anxiety	14	15
Insomnia	8	8
Fibromyalgia	6	8
Pruritus	5	5
RLS	4	4
Bipolar	2	2
Migraine	0.5	0.4
Ssizures	0.4	0.5
PLMS	0.3	0.4
No diagnosis	29	26

Dose Category	LOC	falls	fractures
	Adjusted HR (95% CI)	Adjusted HR (95% CI)	Adjusted HR (95% CI)
Gabapentin, mg			
None	1.00	1.00	1.00
	(Reference)	(Reference)	(Reference)
>0-100	1.10	1.26	1.04
	(0.97 to 1.24)	(1.07 to 1.48)	(0.82 to 1.32)
>100–200	1.31	1.35	1.20
	(1.17 to 1.46)	(1.15 to 1.57)	(0.96 to 1.49)
>200–300	1.41	1.30	1.08
	(1.30 to 1.54)	(1.14 to 1.48)	(0.89 to 1.31)
>300	1.50	1.55	1.38
	(1.39 to 1.63)	(1.39 to 1.72)	(1.18 to 1.61)
Pregabalin, mg			
None	1.00	1.00	1.00
	(Reference)	(Reference)	(Reference)
>0-100	1.51	1.24	1.20
	(1.32 to 1.74)	(1.00 to 1.54)	(0.87 to 1.66)
>100	1.46	1.68	1.38
	(1.24 to 1.71)	(1.36 to 2.08)	(1.00 to 1.92)

Ishida et al. J Am Soc Nephrol 29: 1970–1978, 2018

Eligibility Assessment

Key inclusion criteria: adult age≥18 years on in-center hemodialysis at least three times weekly for >90 days with restless leg syndrome defined by 2012 Revised IRLSSG Diagnostic Criteria with IRLS≥10 with symptoms more than 2 days per week, able to provide informed consent without language barrier or cognitive impairment *Key exclusion criteria*: anemia defined by hemoglobin≤80g/L, hospitalization within previous 4 weeks, previous intolerance to study drugs, change in baseline RLS therapy in previous 4 weeks, pregnancy, planned kidney transplantation, travel or relocation in the next 6 months

DISCO-RLS patient engagement

Uremic pruritus

Fig. 1. Clinical classification in the management of chronic pruritus patients. As a first step, patients are grouped according to their clinical picture and history. Although group I and II may already suggest a category, the classification of the patient is performed in a second step based on histological, laboratory and radiological investigation. If no category fits or several diseases are found (small arrows), the patients are classified into "mixed" or "others" (*arrow on the right*).

Ständer et al. Acta Derm Venereol 2007; 87: 291–294

Figure 4 | Schematic synopsis of potential pathogenic factors in chronic kidney disease-associated pruritus (CKD-aP). CNS, central nervous system.

Mettang et al. KI(2015) 87, 685–691

Figure 1 | Typical skin changes observed in patients suffering from chronic kidney disease-associated pruritus (CKD-aP). (a) Scratch marks with excoriations at the lower leg. (b) Typical hyperkeratotic partly excoriated nodules (prurigo nodularis) located on the forearm. (c) Deep scars and prurigo nodules at the shoulders and back of a female patient.

DOPPS 1-5

"During the past 4 weeks, to what extent were you bothered by itchy skin?"

Murtagh et al. ACKD 2007 Jan;14(1):82-99 prevalence = 55% range 10-77%

Figure 1. | The percentage of patients very much or extremely bothered by itchy skin declined between 1996 and 2015 from 28% to 18%. Question wording: "To what extent were you bothered by itchy skin during the past 4 weeks?" Australia, Belgium, Canada, China, France, the six Gulf Cooperation Council (GCC) countries (Bahrain, Qatar, Kuwait, Oman, Saudi Arabia, and United Arab Emirates), Germany, Italy, Japan, New Zealand, Russia, Spain, Sweden, Turkey, the United Kingdom, and the United States were analyzed. The DOPPS phase 1 collected data from 1996 to 2001, the DOPPS phase 2 collected data from 2002 to 2004, the DOPPS phase 3 collected data from 2005 to 2008, the DOPPS phase 4 collected data from 2009 to 2011, and the DOPPS phase 5 collected data from 2012 to 2015. Data collection in Australia, Belgium, Canada, New Zealand, and Sweden did not begin until phase 2; data collection in China began in phase 4 and started in the GCC countries, Russia, and Turkey in phase 5. Australia, China, France, and New Zealand were excluded in phase 5.

> Rayner et al. CJASN 2017 12: 2000–2007

VAS, VRS, NRS

Measurement of itch

Fig. 1. Assessment scales: visual analogue scale (VAS), numerical rating scale (NRS) and verbal rating scale (VRS).

Phan et al. Acta Derm Venereol 2012; 92: 502–507

Fig. 1. Summarizes important factors that an itch questionnaire needs to address. QoL: quality of life.

DOPPS 1-5:Treatments

	Overall bothered by itchy skin	Nearly always or always bothered by itchy skin	
	All	All	Canada
Non-Rx topical	29%	30%	51%
Rx topical	38%	44%	31%
Non-Rx oral	7%	7%	4%
Rx oral	19%	22%	24%
UV light	1%	1%	0%
None	25%	18%	21%
Responders	N=2434	N=971	N=45

Rayner et al. CJASN 2017 12: 2000–2007

	1 st line	2 nd line	3 rd line	Never	Ν
Topical antihistamines	23%	9%	7%	36%	249
Oral antihistamines (OTC)	32%	13%	3%	31%	238
Oral antihistamines (prescription)	46%	24%	5%	7%	259
IV antihistamines	2%	6%	9%	48%	254
Topical corticosteroids	9%	11%	12%	29%	256
Oral corticosteroids	2%	2%	4%	66%	253
IV corticosteroids	1%	1%	1%	79%	249
Gabapentin	5%	19%	21%	52%	198
Antidepressants	2%	8%	21%	60%	252
Anxiolytics/sedatives	2%	6%	20%	53%	251
Opioids	1%	5%	9%	79%	249

Table 1. Characteristics of the 44 Included Studies Categorized by Intervention

					Pruritus Measurement		
Study	Country	Design	Population	Ν	Tool	Treatment	Comparator
Foroutan ⁶⁰	IR	Parallel arm	HD Ga	bapent 90	0-10 VAS	Pregabalin	Doxepin
(2017)						•	
Amirkhanlou ²¹ (2016)	IR	Parallel arm	HD	52	5-point VRS	Gabapentin	Ketotifen
Nofal ⁴¹ (2016)	EG	Parallel arm	HD	54	10-cm VAS and 5-D	Gabapentin	Placebo
Yue ⁵⁶ (2015)	CN	Parallel arm	HD	188	10-cm VAS +	Pregabalin	Ondansetron or
Solok ⁴⁷ (2012)	тр	Crossover	UD	200	questionnaire	Cohonontin	Placebo
Tol^{50} (2012)	TR	Crossover	HD	29	10-cm VAS	Gabapentin	Placebo
Wu ⁵⁹ (2010)	CN	Parallel arm	HD	41	0-10 VAS	Gabapentin	Standard treatment
Naini ³⁸ (2007)	IR	Parallel arm	HD	34	10-cm VAS	Gabapentin	Placebo
Gunal ³³ (2004)	TB	Crossover	HD	25	10-cm VAS	Gabapentin	Placebo
Gunai (2004)		010000101				Cacaponan	1 100000
40		0	<u>M</u>	ast Cel	I Stabilizers		District
Nakhaee**	IR	Crossover	HD	25	10-cm VAS +	Avena sativa	Diluted vinegar or
(2015) Omidian ⁴²		Devellet erm	UD	50	questionnaire	Meetinemide	nydroxyzine
(2013)	IR	Parallel arm	HD	50	0-5 VAS	Nicotinamide	Placebo
Feily ³⁰ (2012)	IR	Parallel arm	HD	60	0-5 VAS	Topical cromolyn sodium 4%	Placebo
Najafabadi ³⁹	IR	Parallel arm	HD	40	0-10 VAS	Zinc sulfate	Placebo
(2012) Vessal ⁵¹ (2010)	IR	Parallel arm	HD	62	0-10 VAS	Cromolyn sodium	Placebo
				Photo	otherapy		
Ko ³⁵ (2011)	TW	Parallel arm	CKD stages 3-5, HD,	21	0-10 VAS + questionnaire	Narrow band UV-B (narrow-band	Long-wave UV-A
Hsu ³⁴ (2009)	CN	Parallel arm	HD	49	10-cm VAS +	Thermal therapy	Placebo
150 (2003)				-10	questionnaire	using far-infrared	1 acces
Gilchrest ³¹ (1979)	US	Parallel arm	HD, CKD	18	4-point VRS	UV-B	UV-A
Gilchrest ³² (1977)	US	Parallel arm	HD	24	4-point VRS	UV-B	UV-A
			Dishusia	Durand	Intion Medification		
liana ⁶¹ (2016)	CN	Parallal arm		Fresch 51	0.10 VAS	High flux UD	UD filtration
Zhang ⁶⁴ (2016)	CN	Parallel arm	HD	40	0-10 VAS	HD with	Hemodiafiltration
211ang (2010)		T aranoi arm		40		hemoperfusion	with
Hui ⁵⁷ (2011)	CN	Parallel arm	HD	38	10-cm VAS	High-flux HD	Low-flux HD
Chen ²⁷ (2009)	CN	Parallel arm	HD	166	100-mm VAS	High-permeability	Conventional HD
Carmichael ²⁴ (1988)	UK	Crossover	HD	17	VAS	Magnesium-free dialysis	Standard dialysis fluid
			Other	Sucto	mic Treatmente		
Mahmudpour ⁶²	IR	Parallel arm	HD	80	0-10 VAS	Montelukast	Placebo
Kumagai ³⁶ (2010)	JP	Parallel arm	HD	339	100-mm VAS	Nalfurafine HCI 5 µg	3 Nalfurafine HCl 2.5 ug or placebo
(2005)	SE/DK/ NO/FI/	Parallel arm	HD	79	100-mm VAS	Nalfurafine 5 µg IV	Placebo
Mumh 37 (0000)	PL	0	110	~	10	Ondenestary	Disselse
Murphy ²² (2003)	UK	Crossover	HD HD	24	0-10 VAS	Ondansetron	Placebo
(2000)		010000101		13		Chidanaetron	100000
Pauli-Magnus ⁴³ (2000)	DE	Crossover	HD and PD	23	0-10 VAS + questionnaire	Naltrexone	Placebo

Table 1 ((Cont'd).	Characteristics	of the	44 Included Str	udies Categorized b	v Intervention
	(00m uj.	Onalacteristics		44 1100000 010	dules outegonzed b	y miller verhold

Study	Country	Design	Population	N	Pruritus Measurement Tool ^a	Treatment	Comparator
Yoshimoto- Furuie ⁵⁴ (1999)	JP	Parallel arm	HD	16	5-point VRS	GLA-enriched evening primrose oil	Linoleic acid
Peer ⁴⁴ (1996)	IR	Crossover	HD	15	10-cm VAS	Naltrexone	Placebo
Silva45 (1994)	BR	Crossover	HD	29	4-point VRS	Thalidomide	Placebo
Silverberg ⁴⁶ (1977)	IL	Parallel arm	HD	10	4-point VRS	Cholestyramine	Placebo
			Other	Topic	al Treatments		
Boaz ²³ (2009)	IR	Parallel arm	HD	78	5-point NRS	Dead Sea mineral lotion	Lotion with no Dead Sea mineral, or lotion with no active ingredient
Young ⁵⁵ (2009)	US	Parallel arm	HD	28	10-cm VAS	Topical 1% pramoxine HCl	Bland emollient
Chen ²⁶ (2006)	TW	Crossover	HD and PD	17	100-mm VAS + guestionnaire	GLA	Placebo
Duque ²⁹ (2005)	US	Parallel arm	HD	22	10-cm VAS	Tacrolimus 0.1% ointment	Placebo
Bai ⁵⁸ (2002)	CN	Parallel arm	HD	80	5-point VRS	Chinese herb- based cream	Control cream
Cho ²⁸ (1997)	TW	Crossover	HD	22	4-point VRS	Capsaicin 0.025% cream	Placebo
Tarng ⁴⁹ (1996)	TW	Crossover	HD	19	4-point VRS	Capsaicin 0.025% cream	Placebo
Tan ⁴⁸ (1990)	SG	Crossover	HD	31	4-point VRS + 100-mm VAS	a Sarna lotion (0.5% of each camphor, menthol, and phenol)	Eurax lotion (10% crotamiton)
			Alte	rnativ	e Treatments		
Kılıç Akça ⁶³ (2016)	TR	Parallel arm	HD	75	0-10 VAS	Acupressure	Transcutaneous electrical acupoint stimulation or control
Yan ⁵³ (2015)	CN	Parallel arm	HD	71	0-10 VAS	Vaccaria seed auricular acupressure	Sham acupressure
Cavalcanti ²⁵ (2003)	BR	Parallel arm	HD	28	4-point VRS 3×/d (9 total scores) converted to % of max score	Verum medication	Placebo

Abbreviations: BR, Brazil; CKD, chronic kidney disease; CN, China; DE, Germany; DK, Denmark; EG, Egypt; FI, Finland; GLA, gamma-linolenic acid; HCI, hydrochloride; HD, hemodialysis; IL, Israel; IR, Iran; IV, intravenous; JP, Japan; NO, Norway; NRS, numerical rating scale; PD, peritoneal dialysis; PL, Poland; SE, Sweden; SG, Singapore; TR, Turkey; TW, Taiwan; UK, United Kingdom; US, United States; VAS, visual analogue scale; VRS, verbal rating scale.

^aQuestionnaire refers to pruritus questionnaire. ^bPopulation was taken from pruritus cohort.

Simonsen et al. AJKD 2017; 70(5):638-655

SR, MA of RCT's

(Continued)

Emollient

glycerol 15% paraffin 10% oil-in-water emulsion

Base Glaval

crime hydratar

Table 2. Comparison of uremic xerosis severity on the lower legs between the two treatment groups after 7 days (Period I) in the study population (intent-to-treat analysis) Test Comparator Р Study Parameters Product (n (n = 99)= 99) Treatment response (n, %)72 (73%) 44 (44%) < 0.0001 yes 27 (27%) 55 (56%) no Instrumental severity of xerosis (arbitrary units, mean \pm SEM) SURFT 11.37 ± 0.64 10.25 ± 0.55 baseline 3.19 ± 0.42 5.35 ± 0.57 < 0.0001 day 7 MOD 19.20 ± 0.98 18.02 ± 0.76 baseline dav 7 7.83 ± 0.60 11.56 ± 0.93 < 0.0001 Test side preference 60 13 < 0.0001 clearly better 26 26 comparable

Figure 2. | Evolution of the severity of uremic pruritus under treatment in the study population (n = 99). *P < 0.0001 (intragroup analysis).

Balaskas et al. CJASN 2011; 6: 748–752

ORN symptom management guide for pruritus

Pruritus Treatment Algorithm for Hemodialysis Patients

https://www.ontariorenalnetwork.ca/ en/kidney-care-resources/clinical-tools/ symptom-management

Ontario Renal Network

KALM-1 = difelikefalin

Mean Change from Baseline -2-Difelikefalin -3-10 Week Figure 2. Mean Change in Worst Itching Intensity Numerical Rating Scale (WI-NRS) Score.

Shown is the least-squares mean change from baseline (point estimates) in the weekly mean WI-NRS score, as analyzed with the use of a mixed-effects model with repeated measures. Scores range from 0 to 10, with higher scores indicating greater intensity. The I bars indicate the standard error. Missing data were imputed with the use of multiple imputation under a missing-at-random assumption. There were 189 patients in each trial group.

Placebo

11

12

Fishbane et al. NEJM 2019 November 8, 2019

Transition to dialysis: Stressors and mood disorders

DSM V MDE criteria

- 5 or more of the following symptoms: SIGECAPS present most of the day nearly ever day for a minimum of 2 consecutive weeks.
- at least 1 symptom is ether depressed mood or loss of interest or pleasure
- the symptoms cause substantial distress or impair psychosocial functioning
- not the direct result of the physiological effect of a substance or general medical disorder
- symptoms cannot be explained by response to significant loss

- depressed mood
- loss of interest or pleasure in most or all activities
- insomnia or hypersomnia
- change in appetite or weight
- psychomotor retardation or agitation
- low energy
- poor concentration
- thoughts of worthlessness or guilt
- recurrent thoughts about death or suicide

Depression in CKD, dialysis

- HRQOL^{1,2}
- sexual dysfunction^{3,4}
- pain⁵
- non-adherence^{6,7,8,9}
- progression of CKD^{10,11,12,13}
- hospitalizations^{14,15,16,17,18}
- employment¹⁹
- health resource utilization²⁰
- peritonitis²¹
- technique survival²²
- CV events, mortality^{23,24}
- suicide²⁵
- dialysis withdrawal²⁶
- mortality²⁷

Table 1 | Summary of prevalence and heterogeneity findings for depressive symptoms in adults with CKD

	No. of study populations	No. with symptoms/ no. at risk	Prevalence of clinical depression Random effects (95% CI)	Heterogeneity <i>I</i> ²	<i>P</i> -value for subgroup difference
Patient- or clin	ician-administered q	uestionnaire			
Stage 5D	170	15,085/43,650	39.3% (36.8-42.0)	95.6%	
Stages 1–5	12	521/2121	26.5% (18.5–36.5)	94.9%	< 0.001
Transplant	22	1195/4640	26.6% (20.9–33.1)	93.6%	
Interview-based	l assessment				
Stage 5D	28	609/2855	22.8% (18.6–27.6)	79.8%	
Stages 1–5	4	259/1388	21.4% (11.1–37.2)	74.1%	0.82
Transplant	3	33/122	25.7% (12.8-44.9)	55.2%	

Abbreviations: Cl, confidence interval; CKD, chronic kidney disease.

Heterogeneity interpretation: $l^2 > 80\% = \text{moderate}$; $l^2 > 90\% = \text{high}$.

CKD stage 5D = estimated glomerular filtration rate < 15 and treated with dialysis.

Palmer et al. KI 2013;84(1): 179–91

1 Abdel-Kader CJASN 2009 2 Preljevic GHP 2013 3 Peng NDT 2007 4 Theofilou HI 2010 5 Balayev HI 2015 6 Kimmel KI 1998 7 Afsar KI 2009 8 Cukor KI 2009 9 Weisbord CJASN 2014 10 Kop CJASN 2011 11 Hedayati JAMA 2010 12 Tsai AJKD 2012 13 Chiang JPS 2015	 15 Hedayati AJKD 2005 16 Hedayati KI 2008 17 Hedayati JAMA 2010 18 Lacson CJASN 2014 19 Kutner CJASN 2010 20 Weisbord CJASN 2014 21 Troidle AJKD 2003 22Griva IUN 2016 23 Boulare CJASN 2006 24 Saglimbene NDT 2016 25 Chen Psychosomatics 2010 26 Lacson 2012 NDT 27 Farrokhi AJKD 2014
14 Lopes KI 2002	27 Farrokhi AJKD 2014

Association of depression with mortality SR, MA

				Hazard Ratio		Hazard Ra	atio	
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% 0		IV, Random,	95% CI	
Diefenthaeler 2008	1.8718	1.0792	0.3%	6.50 [0.78, 53.89]]	+	•	-
Riezebos 2010	1.6094	0.688	0.7%	5.00 [1.30, 19.26]]			
Drayer 2006	1.4109	0.623	0.8%	4.10 [1.21, 13.90]]		-	
Kojima 2010	0.859	0.398	1.9%	2.36 [1.08, 5.15]]		<u> </u>	
Balogun 2011	0.647	0.304	3.1%	1.91 [1.05, 3.47]]		_	
Griva 2010	0.536	0.297	3.2%	1.71 [0.95, 3.06]]		-	
Boulware 2006	0.7975	0.248	4.4%	2.22 [1.37, 3.61]]		_	
van den Beukel 2010	0.604	0.15	9.6%	1.83 [1.36, 2.45]]			
Lacson 2012	0.278	0.136	11.0%	1.32 [1.01, 1.72]]	-		
Kimmel 2000	0.278	0.081	18.6%	1.32 [1.13, 1.55]]	=		
Lopes 2002	0.329	0.062	22.1%	1.39 [1.23, 1.57]]			
Lopes 2004	0.3506	0.0501	24.4%	1.42 [1.29, 1.57]]	•		
Total (95% Cl)			100.0%	1.51 [1.35, 1.69]		•		
Heterogeneity: Tau ² = (0.01; Chi² = 18.33, df	= 11 (P =	= 0.07); l²	= 40%				
Test for overall effect: 2	Z = 7.34 (P < 0.00001)	,		0.005	U.1 1 Incrimontal Ec	10 Nouro cont	200
	`	,			ravours ex	penmental Fa	ivours cont	101

Figure 2. The association between the presence of depressive symptoms and mortality (adjusted risk estimates using hazard ratios). Abbreviations: CI, confidence interval; SE, standard error.

Farrokhi et al. AJKD 2014; 63(4):623-635

CAST = sertraline vs placebo in CKD

Figure 2. Serial Changes in the 16-Item Quick Inventory of Depressive Symptomatology–Clinician Rated (QIDS-C₁₆) Scores

Participants completed at least 1 assessment after randomization and were included in the primary analysis. Error bars indicate SDs, which were calculated separately for each time point. Each of the 16 QIDS-C₁₆ items can yield a score of 0 to 3 on a Likert scale. The score range is 0 to 27; higher scores indicate more severe depression; a score of 0 to 5 corresponds to a normal affect; 6 to 10 to a mild affect; 11 to 15 to a moderate affect; 16 to 20 to a severe affect; and 21 or greater to very severe depression.

Hedayati et al. JAMA November 2017

Annals of Internal Medicine

Comparative Efficacy of Therapies for Treatment of Depression for Patients Undergoing Maintenance Hemodialysis A Randomized Clinical Trial

- CBT vs sertraline
- n=120 from 3 states in the U.S.
- age<u>>21, ICHD>3</u> months with MDD/dysthymia by BDI-II>15 confirmed by MINI
- CBT = face to face 10 60 minute sessions over 12 week during IHD with education, behavioral + cognitive interventions, modification guided by QIDS-SR
- sertraline = titrated to 200mg po daily guided by side effects
- 1=QIDS-C at 12 weeks
- 2=BDI-II, GAD-7, disability, energy/vitality of SF-36, Global QOL scale, SWLS, social support, PSQI, physical activity, adherence, AE's

Duarte et al. KI 2009 Aug;76(4):414-21 Cukor et al. JASN 2014 25 (1) 196-206

BDI-II = Beck Depression Inventory-II; CBT = cognitive behavioral therapy; MINI = Mini International Neuropsychiatric Interview.

Time Point	Participants, n	Mean Score of Raw D	or Proportion ata (95% CI)	Effect Estimate (95% CI)*	Sensitivity Analyses With Multiple	
		СЫ	Sertraine		imputation	
Primary outcome measure QIDS-C (range, 0-27; higher scores indicate worse depression)						no difference in response
Baseline	120	12.2 (11.0 to 13.5)) 10.9 (9.6 to 12.1)	-	-	(50% decrease in QIDS-C)
Week 6	109	8.4 (7.0 to 9.8)	7.1 (6.1 to 8.2)	-	-	or romission (OIDS CZE)
Week 12	113	8.1 (6.7 to 9.4)	5.9 (4.8 to 7.1)	-1.84 (-3.54 to -0.13)	-1.85 (-3.55 to -0.16)	
Secondary outcome measures BDI-II (range, 0-63; higher scores indicate worse depression)						at 12 weeks P>0.05
Baseline	115	26.2 (23.6 to 28.8)	25.8 (23.3 to 28.4)	-	-	
Week 6	98	20.0 (16.8 to 23.1)	17.4 (14.4 to 20.5)	-	-	
Week 12	99	18.7 (15.2 to 22.2)	14.1 (11.2 to 17.0)	-3.7 (-7.4 to -0.02)‡	-2.9 (-6.7 to 0.8)	
Generalized Anxiety Disorder 7-Item Scale (range, 0-21; higher scores indicate worse anxiety)						
Baseline	116	11.8 (10.2 to 13.3)	11.9 (10.5 to 13.4)	-	-	 missing
Week 6	102	10.2 (8.4 to 12.0)	8.3 (6.6 to 9.9)	-	-	data
Week 12	99	7.5 (5.9 to 9.2)	6.5 (4.9 to 8.1)	-1.2 (-3.1 to 0.8)	-0.7 (-2.7 to 1.3)	uala
Sheehan Disability Scale (range, 0-30; higher scores indicate worse disability)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				multiple
Baseline	112	18.3 (16.0 to 20.6)	16.1 (13.6 to 18.5)	-	-	Imputation
Week 6	103	14.7 (12.4 to 17.1)	13.1 (10.6 to 15.6)	-	-	 MID's
Week 12	102	15.2 (12.8 to 17.6)	11.0 (8.7 to 13.3)	-3.1 (-6.2 to -0.1)§	-2.1 (-5.3 to 1.1)	
Energy/vitality subscale of the 36-Item Short Form Health Survey (range, 0-100; lower scores indicate worse energy/vitality)						 no placebo comparison
Baseline	116	28.4 (23.0 to 33.9)	36.0 (30.6 to 41.4)	-	-	
Week 6	99	35.2 (30.2 to 40.2)	44.3 (37.2 to 51.3)	-	-	 AE'S
Week 12	100	39.2 (33.4 to 44.9)	53.0 (45.7 to 60.3)	10.2 (1.3 to 19.0)	8.2 (-1.0 to 17.5)	
Global Quality of Life Scale (range, 0-10; lower scores indicate worse quality of life)						
Baseline	111	4.0 (3.4 to 4.7)	4.7 (4.1 to 5.3)	-	-	
Week 6	102	4.7 (4.2 to 5.3)	5.9 (5.3 to 6.5)	-	-	
Week 12 Satisfaction With Life Scale (range, 1-35; lower scores indicate worse satisfaction)	106	5.6 (5.0 to 6.2)	6.4 (5.8 to 7.0)	0.6 (-0.2 to 1.4)	0.4 (-0.4 to 1.3)	Mahyatya Datal
Baseline	115	14.7 (12.9 to 16.6)	16.6 (14.3 to 18.9)	-	-	ivienrotra k et al.
Week 6	102	17.0 (15.0 to 19.0)	18.1 (15.9 to 20.3)	-	-	AIM 2019·170·369-
Week 12	105	16.8 (14.9 to 18.6)	20.1 (17.9 to 22.3)	2.6 (0.1 to 5.1)¶	2.3 (-0.4 to 4.9)	, ((1) 2013,170.303
Pittsburgh Sleep Quality Index (range, 0-21; higher scores indicate worse sleep quality)	-	,,		· . · · · · · · / /		379
Baseline	109	12.3 (11.3 to 13.2)	11.1 (10.0 to 12.1)	-	-	
Week 6	88	10.7 (9.3 to 12.0)	8.2 (7.0 to 9.4)	-	-	
Week 12	82	9.5 (8.1 to 10.8)	6.8 (5.5 to 8.1)	-1.8 (-3.4 to -0.2)**	-1.2 (-2.7 to 0.4)	

Table 2. Primary and Secondary Outcomes for Patients Receiving Hemodialysis With Depression Randomly Assigned to CBT or Sertraline Treatment

ORN symptom management guide for depression

CCC Ontario Renal Network

https://www.ontariorenalnetwork.ca/ en/kidney-care-resources/clinical-tools/ symptom-management

Depression & Anxiety Algorithm for Hemodialysis Patients

Pain

- "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage"
- multidimensional
 - physical and psychosocial
- acute vs chronic
- nociceptive vs neuropathic
- psychological effects
- physical function
- experiences, goals, expectations

Turk DC et al. Lancet 2011; 377:2226

Chronic pain

Turk DC et al. Lancet 2011; 377:2226

- cancer vs non-cancer
- 4 categories = neuropathic, MSK, inflammatory, mechanical/compressive
- treatment
 - non-pharmacologic = physical medicine, behavioural medicine, neuromodulation, interventional and surgical approaches
 - pharmacologic = acetaminophen, NSAID, tramadol, opioids, A2DL, TCA/SSRI/SNRI, AED, muscle relaxants, NMDA receptor antagonists, topical agents
- nociceptive pain
 - 1st line = acetaminophen, NSAID, 2nd line = opioids
- neuropathic pain
 - 1st line = TCA/SNRI or A2DL, 2nd line = opioids
- opioids
 - controversial
 - insufficient evidence for long term efficacy
 - harms

Measuring pain

- severity = numeric, visual, or verbal scales
- mild pain = 0–3
- moderate pain = 4–6
- severe pain = 7–10
- MID = approximately >10mm on VAS
- physical function
- emotional function = anxiety, depression
- life participation = ADL's
- quality of life

Visual Ana	log	Scale:							
No Pain	Bati	ing Pao	10.1					Wo Ima	rst Pain ginable
0 1 No Pain	2	3 3	4 4	5	6	7	8	9	10 Worst Pain
Verbal Des	crip	tor Sca	les:					In	naginable
		None	Mild	Мо	derate	S	evere		
No Pain Mi	ld	Discom	forting	Dist	ressinç	; Ho	orrible	Excr	uciating

Serlin et al. Pain 1995;61:277--284. Farrar et al. Pain 2001; 94:149

*Numbers add to more than 103 (100%) because 19 patients had more than 1 cause for their pain.

Davison et al. AJKD 2003;42(6):1239-47

Raina R et al. HI 2018; 22:290–296

Analgesic use in CKD, dialysis

Patient population	Patient number	Any analgesic	NSAID	Acetaminophen	Opioids
CKD (3 studies)	2342	-	24% (range 6%-54%)	24%	-
CKD with pain (1 study)	130	-	15%	33%	-
Incident HD/PD (2 studies)	4826	11%	1.8%	_	7% (range 5-18%)
Prevalent HD (13 studies)	25725	27% (range 18-30%)	5% (range 1-16%)	9% (range 0-14%)	15% (range 0-18%)
Prevalent HD with pain (7 studies)	755	56% (range 30-65%)	19% (range 3-42%)	18% (range 0-44%)	22% (range 0-36%)
Withdrawn from dialysis (1 study)	79	87%	-	-	-
Withdrawn from dialysis and followed by palliative care (1 study)	35	-	-	-	97%

TABLE 3. Analgesic use in CKD

overall 47% (95% CI 0.35 to 0.59) acetaminophen prevalence 26% (95% CI, 0.16 to 0.36) NSAID prevalence 16% (95% CI, 0.11 to 0.21) opioid prevalence 22% (95% CI, 0.07 to 0.41) ???A2DL ???TCA ???cannabinoids Davison SN et al. Semin Dial 27: 188–204, 2014

WHO pain ladder in ESKD

Step 3, Severe Pain (7-10) Hydromorphone Launay-Vacher V et al. Methadone Fentanyl J Pain 2005 10 P=0.110 Oxycodone P=0.524 6: 137-148 9 + Nonopioid analgesics +Adjuvants 8 7 Step 2, Moderate Pain (5-6) 6 Hydrocodone 5 Oxycodone 4 Tramadol + Nonopioid analgesics 3 gabapentin 38%; +Adjuvants 2 hydrocodone 27% tramadol 24% 1 oxycodone 20% 0 + Step 1, Mild Pain (1-4) Neuropathic Pain Nociceptive Pain nortriptyline 16%, Type of Pain Acetaminophen (Acet) propoxyphene 2% +Adjuvants

> Barakzoy AS, Moss AH JASN 17: 3198–3203, 2006

43/45 = 96% adequate analgesia defined as no or mild post treatment pain no opioid toxicity N=45 adult HD patients from 2 HD units in Virginia without pain treatment, SF-MPQ 40% nociceptive 31% neuropathic 29% both

Pretreatment Pain Score
 Posttreatment Pain Score

Pretreatment 8.1 (1.2) vs 7.4 (1.2) P=0.11 Posttreatment 1.5 (1.1) vs 1.8 (1.5) P=0.524

Acetaminophen and hip, knee OA –SR, MA

- RCT's paracetamol vs placebo
- hip or knee OA
- 10 RCT's n=3541 participants
- 1.95 g/day to 4 g/day
- short term 3-12 weeks
- placebo = mean reduction in pain 23 points
- pain: a small, likely clinically unimportant improvement
- = MD -3.23, 95% CI -5.43 to -1.02
- physical function = WOMAC = a small likely clinically unimportant improvement
- = MD -2.92, 95% CI -4.89 to -0.95
- no studies measured quality of life
- AE RR 1.01, 95% CI 0.92 to 1.11
- SAE RR 1.36, 95% CI 0.73 to 2.53
- abnormal liver function tests RR 3.79, 95% Cl 1.94 to 7.39

Leopoldino et al. Cochrane 2019 CD013273

NSAIDs

- adverse renal events in 1-5% of patients using NSAIDs
- AKI (ATN, AIN, NS)
- electrolyte (hyperkalemia, hyponatremia)
- edema, HTN, heart failure
- risk of AKI, progression of CKD but unclear if mediated by AKI
- prevention = avoid NSAID in high risk patients, no safe dose or duration
- other side effects = GI (dyspepsia, PUD), bleeding, CV events

Membrane phospholipids

Diverse physical, chemical inflammatory, and mitogenic stimul

kidney

Phospholipase A

platelets

eye

FitzGerald et al. NEJM 2001; 345:433-442

Schlondorff D. KI 1993 44:643

Opioids for chronic non-cancer pain -SR, MA

Mean Difference (95% CI), cm

Figure 2. Pain Relief on a 10-cm Visual Analog Scale Among Patients With Chronic Noncancer Pain Who Received Opioids vs Placebo In 42 High-Quality Randomized Clinical Trials

	Opioids	Group	Placebo	Group	Between-Group			
Source	No. of Patlents	Mean (95% CI), cm ^a	No. of Patients	Mean (95% CI), cm ^a	Mean Difference (95% CI) ^b	Favors Opioids	Favors Placebo	Weight, %c
Fleischmann et al, ⁵⁴ 2001	63	-1.53 (-2.10 to -0.95)	66	-0.93 (-1.53 to -0.32)	-0.60 (-1.42 to 0.22)		Ļ	1.53
Bennett et al, ⁴⁶ 2003	156	-1.90 (-2.34 to -1.46)	157	-0.70 (-1.09 to -0.31)	-1.20 (-1.78 to -0.62)			2.15
Ruoff et al. ⁶⁹ 2003	151	-1.87 (-2.29 to -1.45)	142	-1.07 (-1.43 to -0.70)	-0.80 (-1.35 to -0.25)	_ _		2.24
Babul et al, ⁴⁵ 2004	124	-3.04 (-3.50 to -2.58)	122	-1.77 (-2.23 to -1.31)	-1.27 (-1.91 to -0.63)	- 		1.98
Emkey et al, ⁵² 2004	153	-2.75 (-3.11 to -2.39)	153	-2.12 (-2.49 to -1.75)	-0.63 (-1.14 to -0.12)			2.39
Peloso et al, ⁶⁴ 2004	164	-1.36 (-1.77 to -0.94)	161	-0.56 (-0.87 to -0.24)	-0.80 (-1.32 to -0.28)			2.37
Gana et al, ⁵⁶ 2006	806	-2.15 (-2.32 to -1.98)	205	-1.48 (-1.82 to -1.15)	-0.67 (-1.04 to -0.29)	 		2.86
Webster et al, ⁴¹ 2006	608	-3.40 (-3.58 to -3.23)	101	-2.50 (-3.02 to -1.98)	-0.90 (-1.44 to -0.36)	_ 		2.28
Burch et al, ⁴⁸ 2007	393	-3.03 (-3.24 to -2.82)	196	-2.29 (-2.57 to -2.01)	-0.74 (-1.09 to -0.39)	∔ -		2.96
Fishman et al, ⁵³ 2007	311	-2.57 (-2.87 to -2.28)	224	-1.94 (-2.09 to -1.80)	-0.63 (-0.96 to -0.30)	÷-		3.01
Hale et al, ⁵⁸ 2007	49	0.87 (0.27 to 1.47)	18	3.16 (2.55 to 3.77)	-2.29 (-3.11 to -1.47)			1.53
Katz et al, ⁶² 2007	71	1.09 (0.51 to 1.67)	47	2.60 (1.78 to 3.42)	-1.51 (-2.49 to -0.53)			1.21
Hanna et al, ⁵⁹ 2008	163	-2.10 (-2.50 to -1.70)	165	-1.50 (-1.87 to -1.13)	-0.60 (-1.14 to -0.06)		-	2.28
Vorsanger et al, ⁷⁸ 2008	256	0.42 (0.11 to 0.72)	126	0.96 (0.51 to 1.41)	-0.54 (-1.08 to -0.01)		-	2.30
Afilalo et al, ⁴³ 2010	686	-1.51 (-1.70 to -1.32)	337	-1.31 (-1.58 to -1.04)	-0.20 (-0.53 to 0.13)	-	-	3.00
Breivik et al, ⁴⁷ 2010	86	-0.90 (-1.29 to -0.51)	91	-0.50 (-0.81 to -0.19)	-0.40 (-0.89 to 0.09)	4.	ļ	2.45
Buynak et al, ⁴⁹ 2010	635	-2.90 (-3.10 to -2.70)	316	-2.10 (-2.36 to -1.84)	-0.80 (-1.13 to -0.47)	∔		3.03
Hale et al, ⁵⁷ 2010	133	0.20 (-0.25 to 0.65)	133	1.60 (1.15 to 2.05)	-1.40 (-2.03 to -0.77)	- 		2.02
Katz et al, ⁶⁰ 2010	171	0.10 (-0.11 to 0.31)	173	0.70 (0.47 to 0.93)	-0.60 (-0.91 to -0.29)			3.09
DeLemos et al, ⁵¹ 2011	599	-2.13 (-2.34 to -1.93)	200	-1.65 (-2.02 to -1.28)	-0.48 (-0.91 to -0.06)		-	2.68
Friedmann et al, ⁵⁵ 2011	203	-0.70 (-0.98 to -0.42)	207	-0.30 (-0.64 to 0.04)	-0.40 (-0.84 to 0.04)		ļ	2.63
Schwartz et al, ⁷⁰ 2011	196	0 (-0.37 to 0.37)	193	1.40 (1.03 to 1.77)	-1.40 (-1.92 to -0.88)	- 		2.36
Steiner et al, ⁷³ 2011	257	1.21 (0.93 to 1.49)	283	1.79 (1.53 to 2.05)	-0.58 (-0.96 to -0.20)			2.84
Vojtaššák et al, 77 2011	132	-2.40 (-2.76 to -2.04)	143	-2.60 (-2.98 to -2.22)	0.20 (-0.32 to 0.72)	- -	-	2.35
Rauck et al, 65 2013	649	-2.25 (-2.47 to -2.03)	331	-1.90 (-2.21 to -1.59)	-0.35 (-0.73 to 0.03)		-	2.82
Rauck et al. ⁶⁷ 2014	151	0.48 (0.23 to 0.73)	151	0.96 (0.71 to 1.21)	-0.48 (-0.83 to -0.13)			2.94
Vinik et al, ⁷⁶ 2014	146	-0.04 (-0.36 to 0.28)	131	1.05 (0.65 to 1.45)	-1.09 (-1.60 to -0.58)	- #		2.39
Aral et al, ⁴⁴ 2015 ^d	73	-0.02 (-0.44 to 0.40)	77	0.69 (0.22 to 1.16)	-0.71 (-1.34 to -0.08)	i		2.02
Aral et al, ⁴⁴ 2015 ^d	84	-0.03 (-0.49 to 0.43)	79	0.96 (0.50 to 1.42)	-0.99 (-1.63 to -0.35)	_		1.98
Hale et al, ³⁸ 2015	191	-0.03 (-0.27 to 0.21)	179	0.55 (0.27 to 0.83)	-0.58 (-0.94 to -0.22)			2.90
Katz et al. ⁶¹ 2015	122	0.29 (-0.01 to 0.59)	100	1.85 (1.41 to 2.29)	-1.56 (-2.08 to -1.04)	- 		2.35
Rauck et al, ⁶⁶ 2015 and Well et al, ⁷⁹ 201	17 146	0.60 (0.30 to 0.90)	134	1.20 (0.87 to 1.53)	-0.60 (-1.04 to -0.16)			2.63
Trenkwalder et al, ⁷⁵ 2015	61	-2.30 (-2.67 to -1.93)	73	-1.70 (-2.04 to -1.36)	-0.60 (-1.09 to -0.11)			2.44
Wen et al, ⁸⁰ 2015	296	-3.69 (-3.90 to -3.48)	292	-3.15 (-3.37 to -2.93)	-0.54 (-0.84 to -0.24)			3.11
Gimbel et al, ⁴² 2016	254	0.88 (0.66 to 1.10)	256	1.92 (1.69 to 2.15)	-1.04 (-1.36 to -0.72)	+		3.06
Mayorga et al, ⁶³ 2016	50	-1.45 (-2.17 to -0.73)	48	-2.93 (-3.67 to -2.19)	1.48 (0.47 to 2.49)	i		1.16
Rauck et al, ⁶⁸ 2016	209	0.94 (0.69 to 1.19)	211	1.59 (1.31 to 1.87)	-0.65 (-1.02 to -0.28)			2.87
Simpson and Wlodarczyk, 72 2016	89	-3.30 (-3.76 to -2.84)	92	-2.10 (-2.55 to -1.65)	-1.20 (-1.83 to -0.57)	- -		2.01
Tominaga et al, ⁷⁴ 2016 ^d	60	-3.00 (-3.51 to -2.49)	31	-2.90 (-3.71 to -2.09)	-0.10 (-1.03 to 0.83)		—	1.30
Tominaga et al, ⁷⁴ 2016 ^d	60	-2.60 (-3.18 to -2.02)	31	-2.60 (-3.57 to -1.63)	0 (-1.09 to 1.09)		•	1.05
Christoph et al, ⁵⁰ 2017	123	-3.03 (-3.27 to -2.79)	125	-2.16 (-2.58 to -1.74)	-0.89 (-1.50 to -0.28)	_ _		2.06
Serrie et al, ⁷¹ 2017	650	Not reported ^e	337	Not reported ^e	-0.05 (-0.27 to 0.17)	i •	-	3.37
Overall		-			-0.69 (-0.82 to -0.56)	\$		100.00
Test for heterogeneity: I ² = 70.4%, P<.0	001							7

96 RCT's

26169 participants

25 neuropathic, 32 nociceptive, 33 central, 6 mixed opioids vs placebo

reduced pain

- WMD -0.69cm (95% CI -0.82cm to -0.56cm)
 - 10cm VAS
- modeled risk difference for achieving the MID
 - 11.9% (95% CI 9.7% to 14.1%)

improved physical functioning

- WMD, 2.04 points (95%Cl, 1.41 to 2.68 points)
 - 100-point SF-36 PCS
- modeled risk difference for achieving the MID
 - 8.5% (95%Cl, 5.9% to 11.2%)

Busse JW et al. JAMA 2018; 320:2448

Opioids: AE's and SAE's

- AE RR 1.42 (95% CI 1.22-1.66)
- SAE RR 2.75 (95% CI 2.06-3.67)
- The risks of specific adverse events were increased for constipation, dizziness, drowsiness, fatigue, hot flushes, increased sweating, nausea, pruritus, and vomiting

Els C et al. Cochrane 2017 Issue 10 CD012509 Figure 2. Analysis 1.1: Opioids versus placebo, any adverse event. CI: confidence interval df: degrees of freedom M-H: Mantel-Haenszel method of meta-analysis P: probability Z: Z score (standard score)

	Opioi	ids	Place	bo		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Stannard 2016	21	43	27	51	10.0%	0.92 [0.62, 1.38]	
Derry 2016	72	84	56	79	23.0%	1.21 [1.02, 1.43]	
da Costa 2014	2145	2725	837	1506	30.5%	1.42 [1.35, 1.49]	•
Whittle 2011	6	11	3	8	2.0%	1.45 [0.51, 4.13]	
McNicol 2013	152	202	85	197	22.0%	1.74 [1.46, 2.09]	
Gaskell 2016	40	48	22	50	12.5%	1.89 [1.35, 2.65]	_ _
Total (95% CI)		3113		1891	100.0%	1.42 [1.22, 1.66]	•
Total events	2436		1030				
Heterogeneity: Tau* -	0.02; C	ni° = 16	5.02, df	= 5 (P ·	- 0.007);	l" = 69%	0.2 0.5 1 2 5
Test for overall effect:	Z = 4.50) (P < 0	0.00001)				Favours onioid Favours placebo

Figure 3. Analysis 1.2: Opioids versus placebo, any serious adverse event. CI: confidence interval df: degrees of freedom M-H: Mantel-Haenszel method of meta-analysis

> P: probability Z: Z score (standard score)

	Opioids Placebo		bo		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Stannard 2016	6	134	4	134	6.6%	1.50 [0.43, 5.20]	-+
Derry 2016	8	84	4	79	6.8%	1.88 [0.59, 6.00]	+
Cepeda 2006	116	505	43	505	71.2%	2.70 [1.94, 3.74]	■
Santos 2015	73	1767	4	337	11.1%	3.48 [1.28, 9.46]	
da Costa 2014	9	355	2	326	3.5%	4.13 [0.90, 18.98]	
Gaskell 2016	4	48	0	50	0.8%	9.37 [0.52, 169.45]	
Total (95% CI)		2893		1431	100.0%	2.75 [2.06, 3.67]	•
Total events	216		57				
Heterogeneity: $Chi^2 =$ Test for overall effect	2.52, df	= 5 (P	= 0.77;	1 ² = 09	5		0.005 0.1 1 10 200
rescior overall effect.	2 - 0.90	10 - 1					Favours opioid Favours placebo

Opioids and adverse outcomes

Ishida et al. CJASN 13: 746–753, 2018 Recommended

Caution

Avoid

Opioid exposure	LOC Adjusted HR (95% CI)	Fall Adjusted HR (95% CI)	Fracture Adjusted HR (95% CI)
None	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)
Lower dose <u><</u> 60mg morphine equivalents	1.28 (1.23 to 1.34)	1.28 (1.21 to 1.36)	1.44 (1.33 to 1.56)
Higher dose >60mg morphine equivalents	1.67 (1.56 to 1.78)	1.45 (1.31 to 1.61)	1.65 (1.44 to 1.89)
None	1.00 (Reference)	1.00 (Reference)	1.00 (Reference)
Hydromorphone	1.39	1.02	1.03
	(1.23 to 1.57)	(1.01 to 1.04)	(1.02 to 1.04)
Fentanyl	1.18	1.06	1.03
	(1.11 to 1.25)	(0.96 to 1.17)	(0.90 to 1.18)
Methadone	1.14	1.08	1.08
	(1.01 to 1.29)	(0.92 to 1.28)	(0.87 to 1.34)
Hydrocodone	1.37	1.34	1.40
	(1.29 to 1.47)	(1.27 to 1.41)	(1.32 to 1.48)
Oxycodone	1.31	1.13	1.25
	(1.25 to 1.38)	(1.06 to 1.22)	(1.19 to 1.31)
Tramadol	1.48	1.42	1.65
	(1.31 to 1.69)	(1.19 to 1.69)	(1.41 to 1.92)
Codeine	3.65	1.57	2.94
	(2.12 to 6.30)	(0.64 to 3.83)	(1.00 to 8.66)
Morphine	1.40	1.15	1.11
	(1.27 to 1.55)	(0.99 to 1.32)	(0.90 to 1.38)

Opioids and more adverse outcomes

Table 6. Adjusted HRs of death, discontinued dialysis, and hospitalization in 2011–2012 associated with 2010 prescription for \geq 90 days of an opioid in the 2010 prevalent dialysis cohort (*n*=149,757)

		Outcome: De	ath	Outco	ome: Discontinue	ed Dialysis	Out	lization	
Characteristics	HR	95% CI	P Value	HR	95% CI	P Value	HR	95% CI	P Value
Opioid prescription ^a									
None	1.00			1.00			1.00		
Short term	1.05	1.02 to 1.07	< 0.001	1.13	1.05 to 1.22	0.002	1.13	1.11 to 1.14	< 0.001
Chronic, <20 MME/d	1.16	1.11 to 1.21	< 0.001	1.32	1.15 to 1.53	< 0.001	1.26	1.22 to 1.29	< 0.001
Chronic, 20–50 MME/d	1.26	1.22 to 1.30	< 0.001	1.36	1.22 to 1.51	< 0.001	1.29	1.27 to 1.32	< 0.001
Chronic, 50+ MME/d	1.39	1.34 to 1.44	< 0.001	1.47	1.30 to 1.66	< 0.001	1.38	1.35 to 1.41	< 0.001

ORN symptom guide for chronic pain

CCC Ontario Renal Network

<u>https://www.ontariorenalnetwork.ca/</u> <u>en/kidney-care-resources/clinical-tools/</u> symptom-management

Chronic Pain Treatment Algorithm for Hemodialysis Patients

Musculoskeletal/Nociceptive Pain

Assessment

- Nociceptive pain is most commonly described as aching, dull, gnawing, throbbing, or cramping but may be intermittently sharp
- Characterize the chronic pain: character (aching, dull, etc.), location, radiation, intensity, timing, duration, aggravating factors, and alleviating factors (including medications used)

Consider Etiology

- Exclude dangerous causes of pain such as angina, fracture, or infection particularly
 if pain is new or recently changed character or increased intensity
- Nociceptive pain is often due to musculoskeletal issues (low back pain, myofascial pain syndrome, sprains, etc.)

Non-Pharmacologic Measures

- Encourage pain diary
- Consider gentle exercise, yoga, deep breathing exercises, massage, meditation, or physiotherapy as appropriate

Refer to the Ontario Renal Network Pain Patient Self-Management Guide for more information.

Pharmacologic Options - For Non-Severe Nociceptive Pain

- Acetaminophen* (including acetaminophen arthritis formulation): Max. 4 g/day; caution if Hx of EtOH, other liver enzyme inducer (e.g., rifampin), and heart failure. Follow GGT & ALT Q3 months if dose >2.6 g/day
- Duloxetine*: 30 mg/day
- Consider short course of NSAIDs in **anuric** patients (consider gastric ulcer risk): Ibuprofen* 400-800 mg daily, Naproxen* 250-500 mg daily
 For Localized Pain consider:
 - Topical NSAIDs: Apply TID to QID (diclofenac 5 to 25% in Phlojel, diclofenac gel 1.16% [OTC])
 - Capsaicin cream 0.025% or 0.075%: Apply bid to gid (may take >2 weeks for onset of action)

Pharmacologic Options - For Severe Nociceptive Pain

Consider adding an opioid to non-opioid analgesic and or adjuvant after considering risk of opioid abuse (for example, using the Current Opioid Misuse Measure [COMM]).

AVOID MORPHINE, CODEINE AND MEPERIDINE

- Preferred Short Acting Opioid:
 - Hydromorphone IR*: 0.25 to 0.5 mg PO Q4 hours PRN

Consider regularly scheduled dosing once a stable dose identified for constant pain. Regularly scheduled dosing may also be useful in very severe pain.

- Preferred Long Acting Opioids:
 - Hydromorphone CR*: POQ12 hours (available in 3 mg increments)
 - Fentanyl patch*: Initial dose: 12 µg/hours patch Q3 days, increase dose to next patch size every 2nd HD run. Consider use only after opioid requirement stable.

Note: If pain control not optimal before next scheduled CR dose, consider giving ½ total daily dose of hydromorphone Q8 hours Consider consultation with chronic pain specialist, medical marijuana prescriber, methadone prescriber, family physician comfortable with pain management, and/or palliative care service.

For Refractory Severe Pain

Consider consultation with chronic pain specialist, medical marijuana prescriber, methadone prescriber and/or palliative care service.

Cannabinoids for pain

Whiting et al. JAMA 2015;313(24):2456-2473

Figure 2. Improvement in Pain

Improvement in Pain With	Canna	binoid Events	Placel	bo Events	Odds Ratio	Favors	Favors	
Cannabinoid vs Placebo by Study	No.	Total No.	No.	Total No.	(95% CI)	Placebo	Cannabinoid	Weight, %
Tetrahydrocannabinol (smoked)								
Abrams et al, ⁷⁷ 2007	13	25	6	25	3.43 (1.03-11.48)			6.51
Nabiximols								
GW Pharmaceuticals, ²² 2005	54	149	59	148	0.86 (0.54-1.37)			19.02
Johnson et al, ⁶⁹ 2010	23	53	12	56	2.81 (1.22-6.50)	-		10.87
Langford et al, ⁶⁵ 2013	84	167	77	172	1.25 (0.81-1.91)			20.19
Nurmikko et al, ⁷⁶ 2007	16	63	9	62	2.00 (0.81-4.96)			9.84
Portenoy et al, ⁶⁷ 2012	22	90	24	91	0.90 (0.46-1.76)			14.04
Selvarajah et al, ⁷⁰ 2010	8	15	9	14	0.63 (0.14-2.82)	· • • • • • • • • • • • • • • • • • • •		4.63
Serpell et al, ⁸⁸ 2014	34	123	19	117	1.97 (1.05-3.70)			14.91
Subtotal 1 ² =44.5%, (P=.0.94)	241	660	209	660	1.32 (0.94-1.86)		\diamond	93.49
Overall 1 ² =47.6%, (P=.0.64)	254	685	215	685	1.41 (0.99-2.00)		\checkmark	100.00
							· · · · · · · · · · · · · · · · · · ·	т
						0.2 1	.0 1	.0
						Odds	Ratio (95% CI)	

Odds indicate 30% or greater improvement in pain with cannabinoid compared with placebo, stratified according to cannabinoid. The square data markers indicate odds ratios (ORs) from primary studies, with sizes reflecting the statistical weight of the study using random-effects meta-analysis. The

horizontal lines indicate 95% CIs. The blue diamond data markers represent the subtotal and overall OR and 95% CI. The vertical dashed line shows the summary effect estimate, the dotted shows the line of no effect (OR = 1).

Cannabinoids and AE's

- Any AE OR 3.02 95% CI 2.42-3.80
- SAE OR 1.41 95% CI 1.04-1.92
- Withdrawal OR 2.94 2.18-3.96
- MedDRA high level grouping = GI, psychiatric, nervous system, general, ear and labyrinth, renal and urinary
- Individual AE = dizziness, dry mouth, nausea, fatigue, somnolence, euphoria, vomiting, diarrhea, disorientation, asthenia, drowsiness, confusion, balance, hallucination

Whiting et al. JAMA 2015;313(24):2456-2473

able 3. Summary Estimates From Meta-analyses for Each AE Assessed: Odds of Participants Experiencing AE With Cannabinoid vs Placebo or Active Comparison

	No. of Studies (No. of Patients)	Summary OR (95% CI)	I²,%
eneral AE categories			
Any	29 (3714)	3.03 (2.42-3.80)	31
Serious	34 (3248)	1.41 (1.04-1.92)	0
Withdrawal due to AE	23 (2755)	2.94 (2.18-3.96)	2
edDRA high-level grouping ¹⁶⁴			
Gastrointestinal disorders	10 (1960)	1.78 (1.43-2.22)	0
Infections and Infestations	7 (1681)	1.13 (0.87-1.46)	0
Psychiatric disorders	8 (1672)	3.10 (1.81-5.29)	55
Nervous system disorders	10 (1521)	3.17 (2.20-4.58)	46
Musculoskeletal and connective tissues disorders	7 (1310)	1.32 (0.75-2.32)	34
General disorders and administration site conditions	6 (1208)	1.78 (1.34-2.36)	0
Death	5 (929)	1.01 (0.51-2.00)	0
Ear and labyrinth disorders	3 (922)	2.72 (1.55-4.75)	0
Respiratory, thoracic, and mediastinal disorders	5 (851)	0.80 (0.46-1.39)	0
Cardiac disorders	7 (833)	1.42 (0.58-3.48)	0
Blood disorders	3 (543)	1.42 (0.20-10.25)	18
njury, poisoning and procedural complications	3 (543)	1.18 (0.48-2.93)	0
Renal and urinary disorders	3 (470)	2.45 (2.27-2.65)	0
investigations	2 (427)	1.55 (0.36-6.71)	0
Metabolism and nutrition	2 (427)	2.37 (1.00-5.61)	0
Neoplasms, benign, malignant, and unspecified	2 (427)	0.99 (0.47-2.08)	0
5kin and subcutaneous	3 (405)	0.85 (0.34-2.13)	0
Eye disorders	1 (339)	1.42 (0.46-4.33)	NA
Reproductive system	1 (246)	1.55 (0.20-11.92)	NA
Hepatobiliary disorders	1 (181)	3.07 (0.12-76.29)	NA
Mental status change	3 (106)	2.49 (0.49-12.64)	0
Other body systems	1 (42)	2.59 (0.34-19.47)	NA
injection site pain	1 (32)	2.49 (0.92-6.68)	NA
Ividual AEs			
Dizziness	41 (4243)	5.09 (4.10-6.32)	18
Dry mouth	36 (4181)	3.50 (2.58-4.75)	28
Nausea	30 (3579)	2.08 (1.63-2.65)	0
Fatigue	20 (2717)	2.00 (1.54-2.62)	0
Somnolence	26 (3168)	2.83 (2.05-3.91)	27
Euphoria	27 (2420)	4.08 (2.18-7.64)	49
Depression	15 (2353)	1.32 (0.87-2.01)	0
Vomiting	17 (2191)	1.67 (1.13-2.47)	0
Diarrhea	17 (2077)	1.65 (1.04-2.62)	15
Disorientation	12 (1736)	5.41 (2.61-11.19)	0
Asthenia	15 (1717)	2.03 (1.35-3.06)	0
DrowsIness	18 (1272)	3.68 (2.24-6.01)	44
Anxlety	12 (1242)	1.98 (0.73-5.35)	54
Confusion	13 (1160)	4.03 (2.05-7.97)	0
Balance	6 (920)	2.62 (1.12-6.13)	0
Hallucination	10 (898)	2.19 (1.02-4.68)	0
Dyspnea	4 (375)	0.83 (0.26-2.63)	0
Paranola	4 (492)	2 05 (0 42-10 10)	0
Psychosis	2 (37)	1.09 (0.07-16.35)	25
Solturor	2 (37)	0.01 (0.05 15 66)	0

Cannabinoids in CKD, dialysis

- symptom management is a top research priority for dialysis patients
- cannabis has the biologic rationale for many symptoms and some evidence from the general population
- recent legalization of cannabis in Canada
- cultural acceptability
- our patients are using it
- we don't know if it works
- we don't know if its safe

- Research projects:
 - patient and physician surveys
 - PK study = single dose, multiple dose
 - pilot trials
 - RCT's

Cannabinoids

- >100 cannabinoids are found in cannabis
- THC=delta-9 tetrahydrocannabinol = psychoactive effects
- CBD=cannabidiol = no psychoactive effects
- CB1, CB2 = endogenous G-protein couple cannabinoid receptors
- routes = inhaled, oral, transdermal
- THC and CBD are metabolized primarily by hepatic cytochrome P-450 3A4, 2C9
- THC, CBD and their metabolites are excreted in the urine 20-35% and feces 65-80% with <5% of a THC dose excreted unchanged in the urine
- No PK or PD data in dialysis

Grotenhermen F. Clinical Pharmacokinetics 2003;42(4):327-60

Lucas et al. BJCP 2018 Nov;84(11):2477-2482

Pharmacokinetics of CBD

No difference in Cmax, tmax, AUC for CBD or its metabolites No AE's in mild, moderate renal insufficiency

N=8 "normal" CrCl 111.7 (31.8) N=8 "mild" CrCl 66.9 (8.3) N=8 "moderate" CrCl 40.0 (6.1) N=8 "severe" CrCl 21.7 (6.0) matched by: age, sex, BMI

Tayo et al. **Clinical Pharmacokinetics** 2019

Cannabis for medical use

- chronic pain (cancer, neuropathic)
- chemotherapy induced nausea and vomiting
- multiple sclerosis associated spasticity
- HIV/AIDS
- seizure disorders (children)
- other

- CB1 and CB2 receptors
- central and peripheral nervous systems
 - interact with many nerve pathways
 - interact with many neurotransmitters
 - many targets
 - many effects

Cannabinoids in CKD and dialysis: physician survey

- n = 151 = 43.4% response rate
- 4/5 clinical experience with medicinal cannabinoids
 - chronic pain, appetite stimulation
- 1/5 prescription experience with medicinal cannabinoids
 - chronic pain, appetite stimulation
- 9/10 experience with non-prescription cannabis
 - recreational
 - symptoms
- 4/10 personal use of cannabis
- 1/10 recent use of cannabis since legislation
- multilevel linear regression: only symptom and province were independent predictors, not practice vintage, sex/gender, clinical experience, prescription experience, personal use

× sleep

PK Study of THC, CBD in dialysis

n=10 (5 men, 5 women) prevalent ICHD with tunneled catheter no liver dysfunction no recent cannabis <30 days no pregnancy or breastfeeding no safety concerns (dependency, CV, psychiatric, tolerability)

Time	-4 hours	-3 hours	-2 hours	-1.5 hours	-1 hour	-0.5 hours	HD Start t = 0	+1 hours	+2 hours	middle of HD	+3 hours	HD finish	HD finish +15 mins	HD finish +60 mins	+24 hours	pre-HD +48 hours
Blood cannabinoids	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Dialysate cannabinoids										Х						
24 hour urine cannabinoids							Х	Х	Х	X	Х	Х	Х	Х	Х	

THC, 11-OHTHC, THCCOOH, THC-glucuronide, THCCOOH-glucuronide, CBD and its metabolites measured by MSI-CE-MS

Eligibility Assessment

Key inclusion criteria: age \geq 18 years on in-center hemodialysis \geq 3x weekly for >90 days with generalized uremic pruritus >2 days per week and VAS \geq 50mm, able to provide informed consent *Key exclusion criteria*: etiology of pruritus secondary to primary dermatologic condition, liver disease, hematologic malignancy or allergy, hospitalization within previous 4 weeks, pregnancy, planned kidney transplantation, travel or relocation in the next 6 months

Schedule of follow-up

				Treatment period = 12 weeks*									
				Sequence 1 = 4 weeks			Sequ	uence 2 = 4 wo	eeks	Sequence 3 = 4 weeks			End of study visit
Visit	Recruitment	Run-in	Rand	3 weeks	Dialysis sessions between 3-4 weeks°	4 weeks	3 weeks	Dialysis sessions between 3-4 weeks°	4 weeks	3 weeks	Dialysis sessions between 3-4 weeks°	4 weeks	1 week
Window		+3 days	0	-3 to +5 days	N/A	-3 to +5 days	-3 to +5 days	N/A	-3 to +5 days	-3 to +5 days	N/A	-3 to +5 days	+5 days
Informed Consent	Х												
Eligibility Criteria	Х		Х										
Demographics	Х												
Adherence		Х		Х		Х	Х		Х	Х		Х	
Drug Dispension		Х	Х			Х			Х			Х	
Medications	Х		Х			Х			Х			Х	
Co-interventions	Х		Х			Х			Х			Х	
VAS	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
NRS		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
VRS		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
DLQI		Х	Х	Х		Х	Х		Х	Х		Х	
EQ-5D-5L		Х	Х	Х		Х	Х		Х	Х		Х	
HADS		Х	Х	Х		Х	Х		Х	Х		Х	
IRLS		Х	Х	Х		Х	Х		Х	Х		Х	
PSQI		Х	Х	Х		Х	Х		Х	Х		Х	
ESAS		Х	Х	Х		Х	Х		Х	Х		Х	
SAE Assessment			Х	Х		Х	Х		Х	Х		Х	Х
Drug intolerance			Х	Х		Х	Х		Х	Х		Х	Х
Blinding				Х			Х			Х			
Assessment													

Future trials of cannabinoids for symptoms in dialysis

- chronic pain
- nausea/vomiting
- cachexia/appetite stimulant NCT03664141
- sleep
- RLS
- ???mood disorders
- ???fatigue

Thanks

- PHRI: Dr. Michael Walsh, Dr. PJ Devereaux, Dr. Salim Yusuf, Dr. Shrikant Bangdiwala, Dr. Shun Fu Lee, Kayla Pohl, Jessica Tyrwhitt
- McMaster University:, Dr. Gordon Guyatt, Dr. Lawrence Mbuagbaw
- SJHH: Dr. Scott Brimble, Dr. Christian Rabbat, Dr. Lonnie Pyne, Andrea Mazzetti, Kelsi Salisbury
- Center for Medicinal Cannabis Research: Dr. James MacKillop, Dr. Jason Busse, Dr. Marilyn Huestis
- Canadian Nephrology Trials Network
- Can-SOLVE CKD Network: Dr. Adeera Levin, Dr. Braden Manns, Gwen Herrington, Paul Duperron, Lucy Delgado, Elizabeth Wallace
- KRESCENT
- DISCO investigators, participants

Kidney Research Scientist Core Education and National Training Program