Considerations of checkpoint inhibitor therapy in kidney transplant patients

Provincewide Nephrology Rounds

November 13, 2020

James Lan, MD FRCPC F(ACHI) Assistant Professor, University of British Columbia Director, Immunology Laboratory Department of Pathology and Laboratory Medicine, University of British Columbia Nephrology and Kidney Transplantation, Vancouver General Hospital

- I am not an oncologist
- Natera Inc.

- 69M ESRD from PCKD
- LD transplant 2013 good kidney function, no immediate complications
- Current Cr: 109 umol/L, uACR: 1.3 mg/mmol
- Baseline IS: MMF 500 mg BID, Tac, Pred 5 mg OD
- June 2019: preauricular SCC, involving periparotid lymph nodes \rightarrow curative radiation
- May 2020: chest pain \rightarrow CT: multiple masses in R Lung + R pleural effusion
 - Lung mass bx = poorly differentiated SCC, likely metastatic
 - Bone scan: uptake in right 4/5th ribs
 - PET: FDG activity in right preauricular region, R lung, R chest wall
- Considerations:
 - Goals of treatment
 - IS management
 - Cancer treatment
 - Follow-up

Oncologist would like to treat with checkpoint inhibitor – seeks approval

Changes in cancer incidence and outcomes among kidney transplant recipients in the United States over a thirty-year period.

U.S. Kidney Transplant Recipient (KTRs) Cohort

Transplant Cancer Match Study = SRTR + 18 Cancer Registries (https://www.transplantmatch.cancer.gov)

Cancer Outcomes over Time

- Graft Failure (DCGF)
- Death (DWFG)

Across a 30-year period in the U.S., there was no overall change in cancer incidence among KTRs. Despite improvements in outcomes for NHL, cancer remains a major cause of morbidity and mortality.

Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do?

Mark A. Perazella^{1,2} and Anushree C. Shirali¹

Ophthalmologic Conjuntivitis Episcleritis, scleritis Uveitis Retinitis Blepharitis

Cardiovascular Myocarditis Pericarditis

Endocrine

Thyroiditis Hypophysitis Hypothyroidism Adrenal insufficiency Diabetes mellitus

Dermatologic

Vitiligo Psoriasis Rash Stevens-Johnson DRESS

Hematologic Hemolytic anemia Neutropenia Thrombocytopenia

Neurologic Neuropathy Myelopathy GB syndrome Encephalitis Myasthenia gravis

Pulmonary Pneumonitis Pleuritis Granulomatosis

Gastrointestinal Pancreatitis Ileitis, colitis Gastritis Hepatitis

Musculoskeletal

Myositis Arthritis Dermatomyositis

Kidney

Acute tubulointerstitial nephritis Acute tubular necrosis Minimal change disease Membranous GN Necrotizing GN FSGS, C3GN

Perazella, KI, 2020

Immune checkpoint inhibitor		Drug dosing (mg/kg)	Vd (I)	t _{1/2} (d)	Steady state (wk)	Clearance (l/d)	
Ipilimumab	(CTLA-4)	0.3–10	3.11-4.15	14.7	9	0.36 Linear	
Tremelimumab	(CTLA-4)	10–15	3.97	22	ND	0.2 Linear	
Nivolumab	(PD-1)	0.1–20	2.78-3.63	25	12	0.23 Linear	
Pembrolizumab	(PD-1)	1–10	3.48-4.06	27.3	18	0.22 Linear	
Cemiplimab	(PD-1)	350 mg	5.3	19	16	0.32 Linear	
Atezolizumab	(PD-1L)	1–20	3.28-3.63	27	6–9	0.20 Linear	
Durvalumab	(PD-1L)	0.1–20	3.45-3.51	21	16	0.23 Linear and nonlinear	
Avelumab	(PD-IL)	1–20	1.17–2.83	6.1	4–6	0.59 Linear	

Table 1 | Pharmacology of immune checkpoint inhibitors²⁷⁻⁴⁴

ND, no data; $t_{1/2}$, half-life; Vd, volume of distribution.

Efficacy and tolerance of immune checkpoint inhibitors in transplant patients with cancer: A systematic review

Thibaut d'Izarny-Gargas¹ | Antoine Durrbach^{2,3,4} | Mohamad Zaidan^{1,3}

¹Department of Nephrology-Dialysis-Trans, Bicêtre Hospital, APHP, Le Kremlin Bicêtre, France

 ²Department of Nephrology-Dialysis-Transplantation, Henri Mondor Hospital, APHP, Creteil, France
³Paris Saclay University, Le Kremlin-Bicêtre, France
⁴UMRS 1186, Villejuif, France

Correspondence Antoine Durrbach Email: antoine.durrbach@aphp.fr

Mohammad Zaiden Email: mohamad.zaidan@aphp.fr Solid organ transplant (SOT) is frequently complicated by cancers, which render immunosuppression challenging. Immune checkpoint inhibitors have emerged as treatments for many cancers. Data are lacking regarding efficacy and rejection risk in the SOT population. We conducted a systematic literature review and analyzed 83 cases of immune checkpoint inhibitor use for cancer in SOT. Two thirds of these patients received anti-programmed death ligand 1 therapy, 15.7% received anticytotoxic T lymphocyte-associated protein 4 therapy, and 10.8% received a combination. Allograft rejection occurred in 39.8% of patients, leading to end-stage organ failure in 71.0% of cases. Outcomes were similar across organs and immunotherapy regimens. The use of immunosuppressants other than steroids, time since transplant, and prior episodes of rejection were associated with the risk of rejection. The median overall survival of patients was 36 weeks. Most of the deaths were related to

С	At least one drug othe	er than corticosteroids	HR (95% Cl) 0.26 (0.097 - 0.71)	_	-						р 0.009 **
	History of prior graft r	ejection	4.99 (1.219 – 20.46)				Ŀ	_	-		- 0.025 *
	Time since transplant	ation ≥ 8 years	0.38 (0.153 – 0.95)			-	-				0.038 *
	Calcineurin inhibitors		0.57 (0.179 - 1.84)		-	-	-	-			0.352
	Immunotherapy type	Anti-CTLA-4	Reference				-				
		Anti-PD-1/PD-L1 or combination	2.35 (0.680 - 8.12)				-	-		•	0.177
	# Events: 25; Global p- AIC: 181.98; Concordan	value (Log–Rank): 0.003 nce Index: 0.76	034	0.1	0.2	0.5	1	2	5	10	20

A - Progression-free survival in patients with melanoma

B - Progression-free survival according to immunosuppression

- CPI in transplant recipients is associated with 40% risk of rejection, among which 70% develop end-stage organ failure
- Rejection occurred early median time to rejection was 5 weeks
- Protective factors for rejection: time since transplant, use of steroid + >= 1 IS agent
- No association between rejection and other immune-mediated adverse events
- No association between rejection and anti-tumor response
- Patient survival did not differ between those with vs. without rejection
- 1/3 of patients experienced stabilization/regression of tumor
- At the end of study 20% of patients were alive, free from rejection and tumor progression
 - How can we better risk-stratify?
 - mTOR potential agent to reduce risk of rejection without compromising anti-tumor activity?
 - How to better follow patient?

- Clarified goals of care
- Immunosuppression adjustment:
 - MMF stopped at time of discovery of metastatic SCC
 - Tacrolimus switched to sirolimus before initiating CPI
- Interdisciplinary clinic follow-up q weekly

Allograft biopsy: T cell rejection (i2, t3, v1)

Can we improve patient risk-stratification?

Recipient B*7					
Donor 1	B*8				
Donor 2	B*35				
Donor 3	B*44				

Recipient B*7						
Donor 1 B*8	1 antigen mismatch					
Donor 2 B*35	1 antigen mismatch					
Donor 3 B*44	1 antigen mismatch					

- Antigen matching: are two HLA molecules the same (yes or no)
- Eplet matching: how similar/dissimilar are two HLA molecules

Wiebe, AJT, 2019

Innovation in rapid HLA sequencing for molecular mismatch analysis

lass	Status	Gene	Eplet Mismatches
Class I	Total	ABC	1
	Antibody-verified	ABC	1
	, Non-verified	ABC	
	Total	Class II	7
	Antibody-verified	Class II	2
	Non-verified	Class II	4.
	Total	DRB1345	2
	Antibody-verified	DRB1345	1
	Non-verified	DRB1345	1
	Total	DQ	2
	Antibody-verified	DQ	1
	Non-verified	DQ	1
	Total	DQB1	1
	Antibody-verified	DQB1	
Class II	Non-verified	DQB1	1
	Total	DQA1	1
	Antibody-verified	DQA1	
	Non-verified	DQA1	
	Total	DP	1
	Antibody-verified	DP	
	Non-verified	DP	1
	Total	DPB1	
	Antibody-verified	DPB1	
	Non-verified	DPB1	
	Total	DPA1	
	Antibody-verified	DPA1	
	Non-verified	DPA1	

Can we monitor patients better?

Biomolecular Detection and Quantification 2019

Taking the first step toward precision medicine

- Patient and his family
- Dr. Marie Michaud and team
- Patient's oncologist
- VGH Kidney transplant team
- University of Washington Kidney Transplant Program, Dr. John Gill, Dr. Sanjay Rao, Natera