

The Evolution of Primary Aldosteronism

Dr. Greg Hundemer

Territorial Acknowledgement

We are hosting this session on the unceded and ancestral territory of the Coast Salish peoples, including the territories of the Musqueam, Squamish, Tsleil-Waututh Nations, and the Métis Chartered Community of the Lower Mainland Region.

Learning Objectives

- 1. To review the pathophysiology of primary aldosteronism.
- 2. To explore the under-recognized prevalence of primary aldosteronism.
- 3. To discuss emerging data on optimal treatment strategies for primary aldosteronism

The Evolution of Primary Aldosteronism

Greg Hundemer, MD MPH

Division of Nephrology The Ottawa Hospital Ottawa Hospital Research Institute

uOttawa

Faculté de médecine Faculty of Medicine

None

Objectives

- 1. What is Primary Aldosteronism?
- 2. Is There an Unrecognized Spectrum of Primary Aldosteronism?
- 3. How Should Primary Aldosteronism be Treated?

Hypertension

- Definition
 - Blood pressure ≥ 140/90 mmHg
 - Drug treatment for high blood pressure

Leung et al, Can J Cardiol 2016

What we're taught in Med School

Hypertension

Primary Aldosteronism

Cushing's Syndrome Pheochromocytoma Renal Artery Stenosis Kidney Parenchymal Disease Sleep Apnea Oral Contraceptives

What we're taught in Med School

When/who to screen for secondary HTN?

- Drug-Resistant HTN
- Malignant HTN w/end organ damage
- Onset at young age
- Other clinical clues: hypokalemia, response to specific BP medications

Problems with this approach?

- Missing milder forms of these secondary causes?
 - Misclassification as "Essential" HTN
 - Identify patients late in disease course
 - Missed opportunities for early targeted interventions
 - Can't tailor treatment to individual patients

Part 1: What is Primary Aldosteronism?

- Also known as:
 - Primary Hyperaldosteronism
 - Conn's Syndrome

- Discovered in 1954 by Jerome Conn (U of Michigan)
 - 34yoF patient
 - Episodic weakness of the legs (near paralysis)
 - Periodic muscle spasms/cramps in the hands
 - Severe, resistant HTN
 - Severe hypokalemia
 - Metabolic alkalosis
 - Hospitalized for 8 months
 - Found to have high urinary aldosterone levels
 - Underwent exploratory surgery to assess adrenal glands
 - Found to have adrenal adenoma
 - HTN/hypokalemia resolved with adenoma removal
 - Soon many additional cases identified

- Most common endocrine cause of HTN but massively underdiagnosed
- Etiology: Autonomous hypersecretion of aldosterone from adrenal glands

- Worse prognostically than other causes of HTN (independent of BP)
- Clinical clues:
 - Severe/resistant HTN
 - Hypokalemia
 - Metabolic alkalosis
 - Adrenal nodule
- Different 1st line therapies than other forms of HTN

CLINICAL VIGNETTE

- 37 year old man diagnosed with HTN
 - Treated with diuretic and calcium-channel blocker
- At age 39, BP 138/92 mmHg on 2 medications
 - Serum Aldosterone: 240 pmol/L
 - Direct Renin Concentration: 2 ng/L
 - Aldosterone-to-Renin Ratio: 120
 - K+ 3.7 mmol/L

Does he have primary aldosteronism?

When/Who to Screen for PA?

Severe or Resistant Hypertension

- BP>150/100 mmHg x3; or >140/90 mmHg on 3 medications; or <140/90 mmHg on 4+ medications
- X HTN + spontaneous or diuretic-induced hypokalemia
- HTN + adrenal mass
- HTN + sleep apnea
- HTN + family member with PA
- HTN + Family history of early-onset HTN or cerebrovascular accident (<40yrs)

Diagnosing Primary Aldosteronism

SCREENING TEST: ARR=aldosterone-to-renin ratio

Positive Screen:
ARR that is >1.4 or >12

Table 6. ARR Cutoff Values, Depending on Assay and Based on Whether PAC, PRA, and DRC Are Measured in Conventional or Système International (SI) Units

	PRA, ng/mL/h	PRA, pmol/L/min	DRC, mU/Lª	DRC, ng/Lª
PAC (as ng/dL)	20	1.6	2.4	3.8
	30 ^b	2.5	3.7	5.7
	40	3.1	4.9	77
PAC (as pmol/L)	750 ^b	60	91	144
	1000	80	122	192

- Renin <u>must</u> be suppressed (DRC <10 ng/L; PRA <1 ng/mL/h)
- Sufficiently elevated aldosterone (>2.0, >20 pmol/L)
- "Renin-Independent Aldosteronism"
 - 1. Suppressed Renin
 - 2. Inappropriately/Dysregulated aldosterone secretion (?)

TES: Funder et al. JCEM 2016

AACE: Vaidya et al. Endocr Pract 2017

How BP Meds Affect the ARR

How BP Meds Affect the ARR

Main Concern: False Negatives

	Renin	Aldosterone
ACE Inhibitors/ ARBs	1	Ļ
MR Antagonists/ ENaC Inhibitors	1	1
Beta Blockers	t	Ļ

The main issue is with MR antagonists and ENaC inhibitors; the other BP meds will not have a major effect when aldosterone is autonomously secreted as with Primary Aldosteronism

I will typically initially measure the ARR even if a patient is on an MR antagonist or ENaC inhibitor if Renin suppressed -> ARR still valid if Renin not suppressed -> Hold MRA/ENaCi 4-6 weeks and repeat ARR

If a patient is on an ACEi/ARB/MRA/ENaC Inhibitor and their renin is still suppressed, that is highly suspicious for Primary Aldosteronism

We Are Not Good at Screening for PA

What are the screening rates for primary aldosteronism among persons with resistant hypertension?

Hypertension

Conclusions: This study suggests substantial underscreening for primary aldosteronism, one of the most common causes of secondary hypertension. Screening Rates for Primary Aldosteronism in Persons with Resistant Hypertension. G Jaffe, Z Gray, G Krishnan, M Stedman, Y Zheng, J Han, G Chertow, J Leppert, V Bhalla. Keeping primary aldosteronism in mind: Deficiencies in screening at-risk hypertensives *

Brian C. Ruhle, MD^a, Michael G. White, MD, MS^a, Salman Alsafran, MD^a, Edwin L. Kaplan, MD^a, Peter Angelos, MD, PhD^a, Raymon H. Grogan, MD, MS^{b,*}

Results: Of nearly 37,000 patients with hypertension and hypokalemia, only 2.7% were ever screened for primary aldosteronism. Most opportunities for case detection were during inpatient hospitalizations, yet in this setting, patients were less likely than clinic patients be screened. Similarly, 3.0% of hypertensive patients with sleep apnea were screened since the inclusion of this group in case detection recommendations.

Adherence to consensus guidelines for screening of primary aldosteronism in an urban healthcare system

Maheshwaran Sivarajah, MD, MSc^a, Toni Beninato, MD, MS^b, Thomas J. Fahey III, MD^{b,*}

Table II

Frequency rates of criteria from the Endocrine Society 2016 clinical practice guidelines for case-detection of PA

Criteria	Patients	
	Yes (%)	No (%)
Sustained BP above 150/100 mm Hg on each of 3 measurements obtained on different days	199 (2.92)	6,610 (97.08)
Hypertension (BP >140/90 mm Hg) resistant to 3 conventional antihypertensive drugs (including a diuretic)	17 (0.25)	6,792 (99.75)
Controlled BP (<140/90 mm Hg) on ≥4 antihypertensive drugs Hypertension and hypokalemia	2 (0.03)	6,807 (99.97)
Spontaneous	6,227 (91.45)	582 (8.55)
Diuretic-induced	107 (1.57)	6,702 (98.43)
Hypertension and adrenal incidentaloma	77 (1.13)	6,732 (98.87)
Hypertension and sleep apnea Hypertension and a family history of early onset (<40 y)	745 (10.94)	6,064 (89.06)
Hypertension	183 (2.69)	6,626 (97.31)
Cerebrovascular accident All hypertensive first-degree relative of patients with PA	10 (0.15)	6,799 (99.85)

Not All Hyperaldosteronism is the Same

PHYSIOLOGY Renin-Dependent Aldosterone Regulation

Yanomami People

PHYSIOLOGY

Renin-Dependent Aldosterone Regulation

Yanomami People vs. Normotensive North Americans (MESA)

Oliver et al. Circulation 1975

PHYSIOLOGY Renin-Dependent Aldosterone Regulation

Brazilian Pit Viper

(Bothrops jararaca)

www.faunaparaguay.com

"Over thousands of years, the same vironmental pressures that forced Yanomami and other terrestrial animals to evolve a hyperactive RAAS, also led Bothrops jararaca to conserve an efficient killing mechanism that targeted its enemies' haemodynamic vulnerabilities. The bradykinin-potentiating peptides that would become the first ACEi's were, in essence, the viper's weapon of choice in a predatorprey arms race."

Pathophysiology: Primary Aldosteronism

- ^ ^ ^ Distal Na⁺ Delivery
- •↑↑↑ K+/H+ Excretion
- •CV and kidney disease

Health Outcomes in PA PRE-Targeted Therapy

Independent of Blood Pressure, MR activation in PA increases risk for:

- CV Disease: CAD, Stroke, CHF, AFib
- Kidney Disease: CKD, Albuminuria

Therefore, early recognition and treatment is indicated

CAD Stre	Stroke	СЦ	AFib	Primary aldosteronism		Essential hypertension		nsion		OR (95% CI)
	SUORE	CHL		Events	Total	Events	Total	Weight		
Not mate	Not matche	Not mat	Not matched studies							
Monticon	Monticone at	Monticor	Monticone et al (2017) ²¹	5	99	20	1573	14.7%		4.13 (1.52–11.25)
Murata et	Murata et al (Murata el	Murata et al (2017) ²²	8	292	12	498	16.3%	•	1.14 (0.46–2.82)
Subtotal	Subtotal (95)	Subtotal	Rossi et al (2013) ²⁶	12	180	1	143	5.5%		10.13 (1.30-78.96)
Total ever	Total events		Subtotal (95% CI)		571		2214	36.5%		2.93 (0.91-9.47)
Heteroge		Total eve	Total events	25		33				
Test for o	Heterogeneit	Heteroge	Heterogeneity: τ ² =0.66; χ ² =5.61, df=1 (p=0.06	5); I ² =64%						
Matched	Test for overa	Test for o	Test for overall effect: Z=1.80 (p=0.07)							
Catena et	Matched stu	Matched	Matched studies							
Milliez et	Catena et al (Mulatero	Catena et al (2008) ²³	7	54	10	323	14.6%	-	4.66 (1.69–12.84)
Mulatero	Milliez et al (2	Savard et	Milliez et al (2015) ²⁴	9	124	3	465	10.6%	·	- 12.05 (3.21-45.23)
Reincke e Savard et	Mulatero et a	Takeda et	Mulatero et al (2013) ¹⁴	11	270	15	810	18.3%		2.25 (1.02-4.96)
Takeda et	Takedaet al (:	Subtotal	Savard et al (2013) ¹²	18	459	14	1290	20.0%		3.72 (1.83-7.54)
Subtotal	Subtotal (95	Total eve	Subtotal (95% CI)		907		2888	63.5%	-	4.01 (2.25-7.12)
Total ever	Total events	Heteroge	Total events	45		42				
Heteroge	Heterogeneit	_	Heterogeneity: $\tau^2 = 0.13$; $\chi^2 = 4.77$, df=3 (p=0.19); l ² =37%							
Test for o	Test for overa	Test for o	Test for overall effect: Z=4.72 (p<0.00001)	. 2.		132			-	3.52 (2.06-5.99)
Total (95	Total (95% C	Total (95	Total (95% CI)		1478		5120	100-0%		
Total ever	Total events	Total eve	Total events	70		75				
Heteroge	Heterogeneit	Heteroge	Heterogeneity: $\tau^2=0.24$; $\chi^2=11.75$, df=6 (p=0.07); $l^2=49\%$							
Test for o	Test for overa	Test for o	Test for overall effect: $Z=6.43$ (p<0.00001)							
Test for su	Test for subg	Test for s	Test for subgroup differences: χ^2 =0.22, df=1 (p	=0.64); I ² =	0%					
						(0.02	0.1	1 10	50
							Esse	ntial hypertension	Primary aldosteronism	

Monticone et al. Lancet D&E 2018; Savard et al. Hypertension 2013; Milliez et al. JACC 2005; Rossi et al. Hypertension 2006

<u>Part 2:</u> Is There an Unrecognized Spectrum of Primary Aldosteronism?

Severity Spectrum of Primary Aldosteronism

Brown et al. Annals of Internal Medicine 2017

Unrecognized Yet Biochemically Overt Primary Aldosteronism

Monticone et al. JACC 2017

Unrecognized Yet Biochemically Overt Primary Aldosteronism

Baudrand et al. JCEM 2016

Unrecognized Yet Biochemically Overt Primary Aldosteronism

Unrecognized Prevalence of Primary Aldosteronism

Sensitivity of the ARR was poor at detecting biochemically overt PA

Brown et al. Annals of Int Med 2020

Severity Spectrum of Primary Aldosteronism

Brown et al. Annals of Internal Medicine 2017

PATHOPHYSIOLOGY: Primary Aldosteronism Renin-Independent Aldosteronism

Inappropriate/Dysregulated Secretion of Aldosterone

Aldosterone Dysregulation

250

Sodium Loaded (>200 mmol/d) (maximal aldosterone suppression) Sodium Restriction (<40 mmol/d) (maximal aldosterone stimulation)

There is a broad distribution of the ability to physiologically suppress, and stimulate, aldosterone.

What determines this distribution?
Does it matter?

50

Aldosterone Dysregulation

Number of Metabolic Syndrome Components

Vaidya et al. Hypertension 2013 Brown et al. Hypertension 2014

Sodium Restriction

Sodium Restriction

Vaidya et al. Hypertension 2013 Brown et al. Hypertension 2014 PATHOPHYSIOLOGY: Primary Aldosteronism Renin-Independent Aldosteronism

Renin Suppression: A Biomarker for MR Activity

Renin Suppression: A Crude Biomarker for MR Activity

PLASMA-RENIN AND BLOOD-PRESSURE

THE LANCET, MARCH 22, 1975

healthy normotensive medical students, nurses, and laboratory technicians were studied while they ate their customary unrestricted diet. 42 of these subjects were also studied after they had consumed a 10 meq. sodium diet for 3 days. Blood for P.R.A. was drawn at noon after 4 hours' ambulation.

"MAXIMALLY STIMULATED RENIN"

Section of Endocrinology, Department of Medicine, Temple University, Philadelphia, Pennsylvania 19140, U.S.A.

E. VICTOR ADLIN.

Renin Suppression: A Crude Biomarker for MR Activity

PLASMA-RENIN AND BLOOD-PRESSURE

THE LANCET, MARCH 22, 1975

Renin activity after sodium restriction, a more sensitive indicator of renin suppression, did show a significant negative correlation with bloodpressure

Section of Endocrinology, Department of Medicine, Temple University, Philadelphia, Pennsylvania 19140, U.S.A.

E. VICTOR ADLIN.

Renin Suppression: A Biomarker for MR Activity

*Adjusted for age, sex, race, BMI, diabetes mellitus, Cr and 24hr U_{Na}

Hundemer et al. JCEM 2017

Renin Suppression: A Biomarker for MR Activity

*Adjusted for age, sex, race, BMI, diabetes mellitus, Cr and 24hr U_{Na}

Hundemer et al. JCEM 2017

Renin Suppression: A Biomarker for MR Activity

Serum Potassium

mEq/L

Urine Potassium Excretion

In individuals without overt PA:

Renin suppression may be a biomarker for a phenotype that is enriched with [subclinical] autonomous aldosterone secretion and MR activation

*Adjusted for age, sex, race, BMI, diabetes mellitus, Cr and 24hr U_{Na}

Hundemer et al. JCEM 2017

Renin Suppression: A Crude Biomarker for MR Activity

Section of Endocrinology, Department of Medicine, Temple University, Philadelphia, Pennsylvania 19140, U.S.A.

E. VICTOR ADLIN.

Longitudinal Cohort Study

Hypothesis:

•A suppressed renin phenotype in normotension increases the risk for incident hypertension (MR-mediated)

Hypothesized Phenotypes:

Suppressed Renin Phenotype: PRA ≤ 0.50 ng/dL/h

Enriched with Renin-Independent Aldosterone Secretion and High MR Activity??

Indeterminate Renin Phenotype: PRA 0.51-0.99 ng/dL/h

Unsuppressed Renin Phenotype: PRA ≥ 1.0 ng/dL/h

Enriched with Renin-Dependent Aldosterone Secretion and Physiologic MR Activity??

Renin Phenotype and Incident Hypertension

Renin Phenotype and Incident Hypertension

Renin Phenotype and Incident Hypertension

MR-Mediated Hypertension

Among Resistant Hypertensives, add-on therapy with spironolactone is most effective, AND those with the lowest Renin responded most

Do a substantial proportion of Resistant HTNives have MR-mediated HTN?

Williams et al. Lancet 2015

PATHWAY-2 Trial

Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies

Williams et al. Lancet D+E 2018

Severity Spectrum of Primary Aldosteronism

Part 3: How Should Primary Aldosteronism Be Treated?

How Should Primary Aldosteronism Be Treated?

CLINICAL VIGNETTE

Is medical treatment optimized? Will we reduce the risk for adverse outcomes? What is the goal of medical therapy for PA?

- BP normalization?
- K⁺ normalization?
- Efficient MR blockade/renin elevation?**

How Should Primary Aldosteronism Be Treated?

SPECIAL FEATURE

Clinical Practice Guideline

The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline

John W. Funder (chair), Robert M. Carey, Franco Mantero, M. Hassan Murad, Martin Reincke, Hirotaka Shibata, Michael Stowasser, and William F. Young. Jr

Hudson Institute of Medical Research (J.W.F.), Clayton, Australia; University of Virginia Health System (R.M.C.), Charlottesville, VA; University of Padova (F.M.), Padua, Italy; Mayo Clinic, Evidence-based Practice Center (M.H.M), Rochester, MN; Klinikum of the Ludwig-Maximilians-University of Munich (M.R.), München, Bavaria, Germany; Oita University (H.S.), Oita, Japan; University of Queensland (M.S.), Brisbane, Australia; and Mayo Clinic (W.F.Y), Rochester, MN.

Objective: To develop clinical practice guidelines for the management of patients with primary aldosteronism

Participants: The Task Force included a chair, selected by the Clinical Guidelines Subcommittee of the Endocrine Society, six additional experts, a methodologist, and a medical writer. The Task Force received no corporate funding or remuneration.

Evidence: We searched for systematic reviews and primary studies to formulate the key treatment and prevention recommendations. We used the Grading of Recommendations, Assessment, Development, and Evaluation group criteria to describe both the quality of evidence and the strength of recommendations. We used 'recommend' for strong recommendations and 'suggest' for weak recommendations.

Consensus Process: We achieved consensus by collecting the best available evidence and conducting one group meeting, several conference calls, and multiple e-mail communications. With the help of a medical writer, the Endocrine Society's Clinical Guidelines Subcommittee, Clinical Affairs Core Committee, and Council successfully reviewed the drafts prepared by the Task Force. We placed the version approved by the Clinical Guidelines Subcommittee and Clinical Affairs Core Committee on the Endocrine Society's Website for comments by members. At each stage of review, the Task Force received written comments and incorporated necessary changes.

Traditional Treatment Dogma

UNILATERAL PA <u>Adenoma (Conn's Tumor)</u>,

"Normal"

BILATERAL PA Macro or micro nodular, hyperplasia

<u>Treatment</u> Surgery for Cure

Treatment

 Na⁺ Restriction AND
Lifelong Mineralocorticoid Receptor Antagonist to normalize BP and K⁺

*Level 1 evidence lacking

Objectives:

1. Do MR antagonists and surgical adrenalectomy adequately prevent adverse outcomes?

2. Does renin serve as a clinically useful biomarker of adequate MR blockade?

Study Cohort Derivation

Medical Therapy for PA and Incident Outcomes

	PA on MRA (N=602)	Essential HTN (N=41,853)
Age (years)	58 (12)	57 (12)
BMI (kg/m²)	31.1 (6.0)	29.8 (6.4)
Serum Potassium	3.6 (0.5)	4.1 (0.5)
SBP at Study Entry	137 (19)	135 (18)
DBP at Study Entry	81 (13)	80 (11)
Mean Anti-HTNive medications (non-MRAs)	2.9 (1.4)	2.7 (1.4)
Other CV Risk Factors (aspirin, statin, LDL, A1c, eGFR, smoking)	No difference	

Cardiovascular Events

Hundemer et al, The Lancet D&E 2018

Blood Pressure Trends in Study Cohort

Atrial Fibrillation

Hundemer et al, JAMA Cardiology 2018

Mortality

Hundemer et al, Lancet D&E 2018

Longitudinal eGFR Decline

Summary:

95

1. Even when PA patients are treated with MR antagonists, they have a more rapid age-related decline in eGFR than patients with essential HTN

2. Curative surgical adrenalectomy in unilateral PA may mitigate this risk.

Incident Chronic Kidney Disease

Hundemer et al. Hypertension, 2018

Biomarkers of MR Antagonism

Risk for Incident Composite Cardiovascular Events

Summary:

1.

The increased risk for CV disease in

100

PA treated with MR antagonists is HR= 2.83 (2.11, 3.80) for Suppressed PRA vs Essential HTN limited to those whose renin remains HR= 1.09 (0.56, 2.10) for Unsuppressed PRA vs Essential HTN HR= 0.58 (0.35, 0.97) for Adrenalectomy vs Essential HTN suppressed. 2. PA patients whose renin 80 Incident Composite Cardiovascular Events (%) substantially rose with MR antagonists had a risk for CV disease comparable to: **Essential hypertension AND** \bullet 60 Unilateral PA treated with **MRA Therapy** adrenalectomy PRA< 1.0 ng/mL/h 23 Excess Events per 100 Persons **MRA Therapy** PRA ≥ 1.0 ng/mL/h 20 **Essential HTN** Surgery 7.5 2.5 5 10 Years

Blood Pressure Trends in Study Cohort

1-6 months prior to study entry

Summary:

Independent of BP, higher MR antagonist dose and a substantial increase in renin activity are associated with a lower risk of incident CV outcomes

PRA < 1.0 ng/mL/h on MRA

PRA ≥ 1.0 ng/mL/h on MRA

Risk for Incident Atrial Fibrillation

Hundemer et al, JAMA Cardiology 2018

Risk for Mortality

Hundemer et al, Lancet D&E 2018

Treatment Summary

The current (recommended) practice of lifelong MR antagonist therapy in PA:

- Associated with a significantly higher risk for incident cardiovascular disease, renal disease & death, *independent of blood pressure control*
- Intensification of MR antagonist therapy to raise renin, as a proxy for optimal MR antagonism, may mitigate these risks.
 - Not always possible!! (adverse effects of MRA, CKD/hyperkalemia)
- Surgical therapy, to cure primary aldosteronism, mitigates these risks

MORE QUESTIONS:

- How to candidly counsel PA patients who receive lifelong MR antagonist therapy about the efficacy and future risk associated with this decision?
- Is the current treatment dogma still appropriate?
- Should surgical adrenalectomy be considered more frequently?

Future Areas to Consider for Treating Primary Aldosteronism

QUESTIONS?