

2015

Mara McAdams-DeMarco, PhD Assistant Professor Departments of Epidemiology and Surgery

Frailty:

A novel concept in ESRD risk prediction

Disclosure

- The research on frailty at JHU was supported by:
 - Clinical Scientist Development Award from the Doris Duke Charitable Foundation
 - NIA: R01AG042504 (PI: Dorry Segev) and K01AG043501 (PI: Mara McAdams-DeMarco)
 - K24DK101828 (PI: Dorry Segev)
 - The American Society of Nephrology (Carl W. Gottschalk Research Scholar Grant)
 - Johns Hopkins University Claude D. Pepper Older Americans Independence Center (P30-AG021334)
- I have no conflict of interest to report.

Who will have better outcomes	42 Year Old	68 Year Old
after KT?		

Who will have better outcomes after KT?

42 Year Old Frail

68 Year Old Nonfrail

Who will have better outcomes after KT?	42 Year Old Frail	68 Year Old Nonfrail
Delayed Graft Function		
2 Week KT Length of Stay		
Early Hospital Readmission		
Mortality		

Who will have better outcomes after KT?	42 Year Old Frail	68 Year Old Nonfrail
Delayed Graft Function	16%	16%
2 Week KT Length of Stay		
Early Hospital Readmission		
Mortality		

Who will have better outcomes after KT?	42 Year Old Frail	68 Year Old Nonfrail
Delayed Graft Function	16%	16%
2 Week KT Length of Stay	32%	21%
Early Hospital Readmission		
Mortality		

Who will have better outcomes after KT?	42 Year Old Frail	68 Year Old Nonfrail
Delayed Graft Function	16%	16%
2 Week KT Length of Stay	32%	21%
Early Hospital Readmission	64%	27%
Mortality		

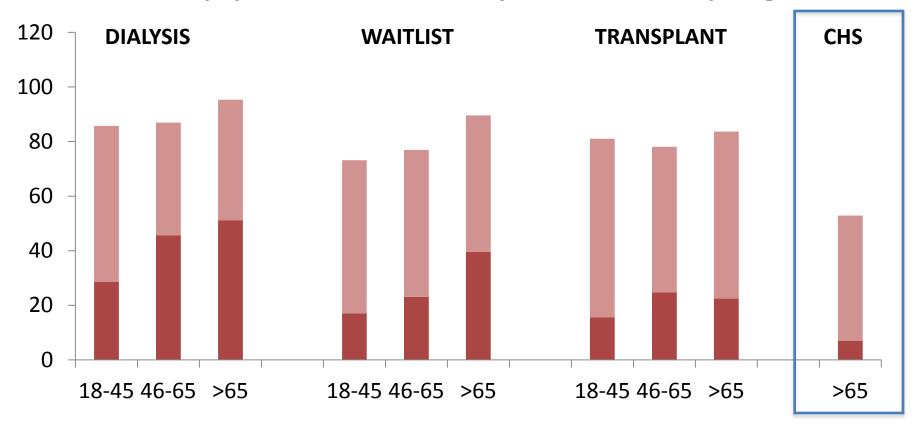
Who will have better outcomes after KT?	42 Year Old Frail	68 Year Old Nonfrail
Delayed Graft Function	16%	16%
2 Week KT Length of Stay	32%	21%
Early Hospital Readmission	64%	27%
Mortality	9%	4%

Demystifying frailty

- A measure of physiologic reserve
- Validated, well studied way to quantify the "Foot of The Bed Test"
- Borrow from our geriatrics colleagues
 - Identified frailty in community-dwelling older adults
- "Elderly" is a very different construct for
 - Community-dwelling older adults
 - Adults of all ages with ESRD
- What is an older adult with ESRD?
 - 43 year old elderly adult with ESRD

Frailty at Johns Hopkins

- Frailty was identified and validated at Johns Hopkins by Linda Fried in 2001
- 8 years ago we began studying frailty in patients with ESRD
 - Observational studies of patients undergoing
 - Hemodialysis
 - Waitlist Patients
 - Kidney Transplantation
- Look at longer and longer term outcomes


Frailty prevalence: By cohort, all ages

Non-Frail
Intermediately Frail
Frail

DIALYSIS	WAITLIST	TRANSPLANT	CHS
9.6%	19.7%	20.1%	46.0%
44.2%	53.5%	58.4%	46.0%
46.2%	26.8%	21.5%	6.9%

DOES FRAILTY INCREASE WITH AGE?

Frailty prevalence: By cohort, by age

Outline

- What is frailty?
- Studies of frailty and ESRD
- Studies of frailty in kidney transplant (KT) recipients
- How can frailty improve clinical care for transplant recipients?

What is the Fried frailty phenotype?

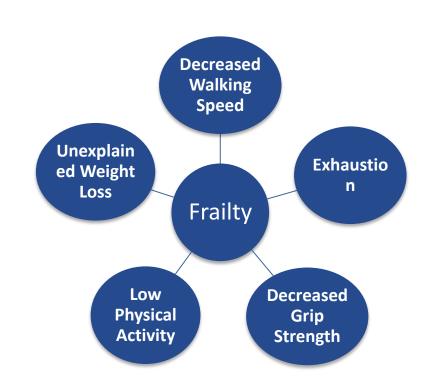
- Phenotype of physiologic reserve and resistance to stressors
- Multi-component syndrome
 - Physical and self-reported components
- Identified in the Cardiovascular Health Study (CHS)
 - Cohort of 5,317 communitydwelling older adults
- 7% of the older population was frail and 7% developed incident frailty over the first 3 years
- Frail older adults were 2.24-fold more likely to die than their nonfrail counterparts

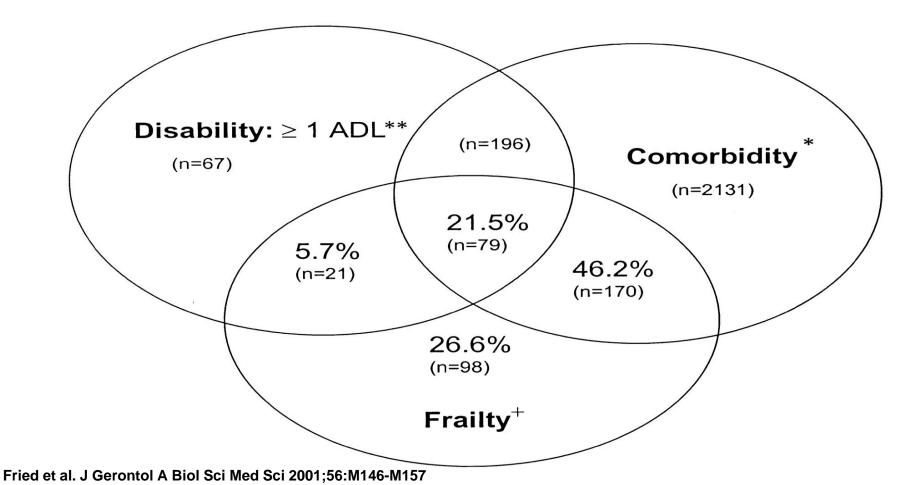
Frailty

	Component	Definition/Measurement
1	Shrinking	Unintentional weight loss > 10 lbs in the past year
2	Weakness	Determined by grip strength test, adjusted for gender and BMI
3	Exhaustion	Measured using 2 questions from the modified 10-item Center for Epidemiological Studies- Depression scale
4	Low Physical Activity	Version of the Minnesota Leisure Time Activities Questionnaire will assess physical activity in 2 weeks prior to study
5	Slowed Walking Speed	Averaging the results of 3 trials of walking 15 feet at a normal pace

Fried et al, J Gerontol, 2001

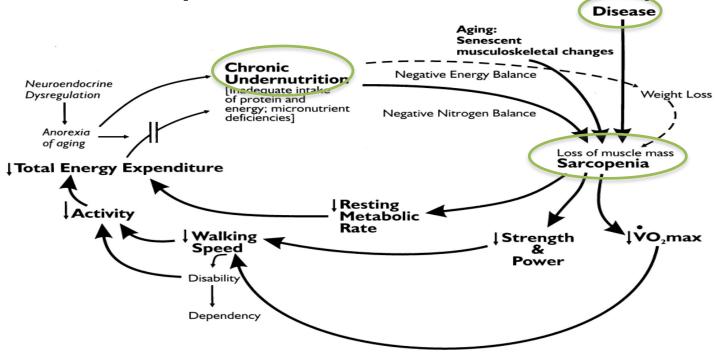
What is the Fried frailty phenotype?


- Definition in older adults:
 - Frail≥3 components
 - Intermediately frail=1 or 2 components
 - Non-frail= 0 components


WHAT ARE THE POTENTIAL LIMITATIONS TO STUDYING FRAILTY IN ESRD?

What is the Fried frailty phenotype?

- Definition in older adults:
 - Frail≥3 components
 - Intermediately frail=1 or 2 components
 - Non-frail= 0 components
- Definition has been refined for other populations, namely KT recipients
 - Too few KT recipients with 0 components


Frailty is not disability or comorbidity

DOES THE BIOLOGICAL BASIS OF FRAILTY PERTAIN TO ESRD?

Biological basis for Fried frailty phenotype

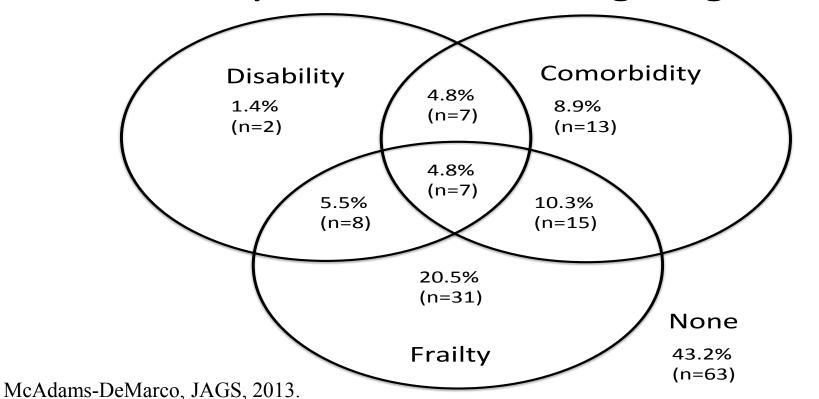
Conceptual Model of Frailty

Fried L P et al. J Gerontol A Biol Sci Med Sci 2001:56:M146-M157

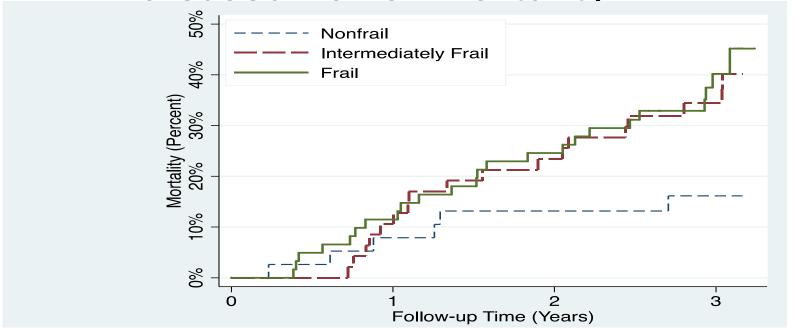
Frailty is associated with poor outcomes in surgery patients

- In older patients undergoing general surgery, frailty is independently associated with:
 - Postoperative complications ^{1,2}
 - Length of stay ¹
 - Discharge to a skilled or assisted-living facility ^{2,3}
 - Mortality ¹
- In general surgery patients of all ages, intermediately frail and frail patients have twice the odds of 30-day complications ⁴

¹ Robinson *Am J Surg*, 2013; ² Makary *Am Col Surg*, 2010; ³ Robinson *Am Col Surg*, 2011; ⁴ Revenig *Am Col Surg*, 2013.


Outline

- What is frailty?
- Studies of frailty and ESRD
- Studies of frailty in kidney transplant (KT) recipients
- How can frailty improve clinical care for transplant recipients?


Frailty prevalence is high in ESRD

- There is a high prevalence of frailty regardless of the ESRD treatment modality:
 - 42% of Prevalent Hemodialysis Patients
 - McAdams-DeMarco, JAGS, 2013
 - 34% of Incident Hemodialysis Patients
 - McAdams-DeMarco, CJASN, under revision
 - 19% of Kidney Transplant (KT) recipients
 - McAdams-DeMarco, AJT, 2013 and 2014
- Frailty is emerging as an important risk factor in adults of all ages with ESRD

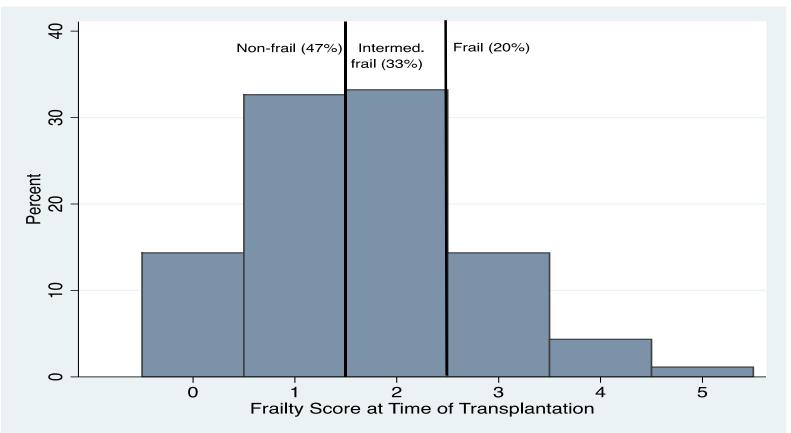
Frailty is not comorbidity, and disability in adults undergoing HD

Frail adults undergoing HD are at increased risk of mortality

HR: 2.60 (95% CI: 1.04, 6.49)

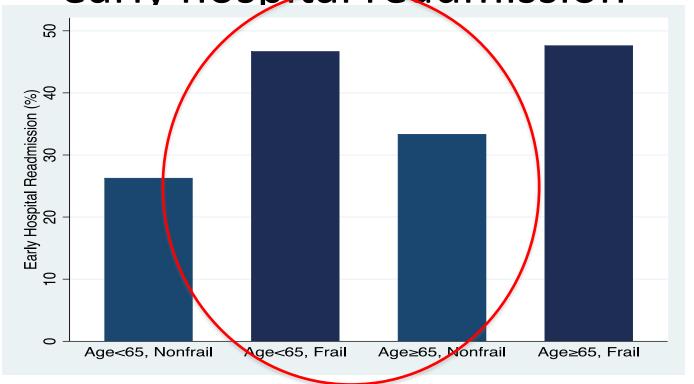
McAdams-DeMarco, JAGS, 2013.

Frail adults undergoing HD are at increased risk of poor outcomes


- Frailty was independently associated with a
 - 2.6-fold higher risk of mortality¹
 - 1.4-fold higher number of <u>hospitalizations</u>¹
 - 1.3-fold higher risk of <u>first hospitalization</u>²
 - 3.1-fold higher number of <u>falls</u>²

² Bao, Arch of Internal Med, 2012

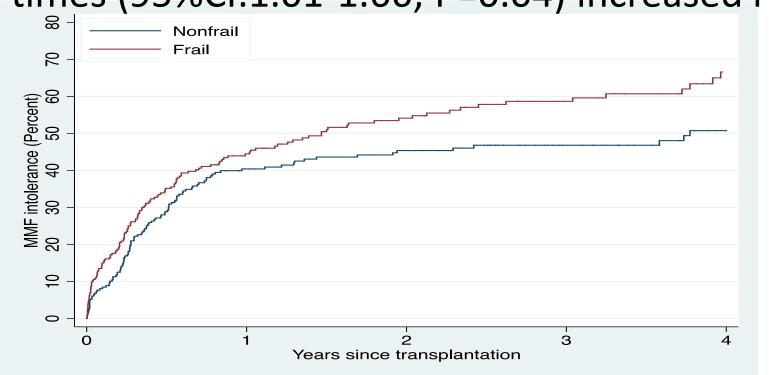
Outline


- What is frailty?
- Studies of frailty and ESRD
- Studies of frailty in kidney transplant (KT) recipients
- How can frailty improve clinical care for transplant recipients?

Frailty prevalence is high at KT

McAdams-DeMarco, AJT, 2014.

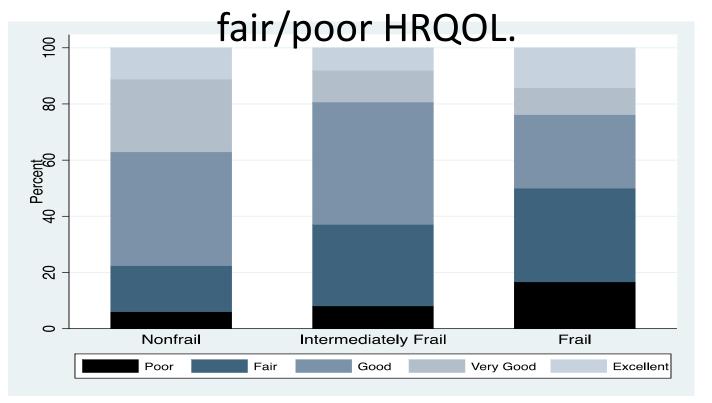
Frail KT recipients are at increased risk of early hospital readmission

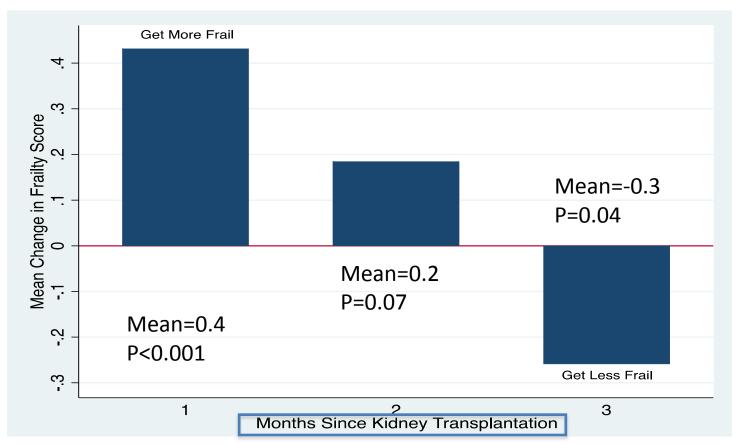


Frail KT recipients are at increased risk of poor outcomes

- KT recipients who are frail at admission for KT are at:
 - 1.9-times (95% CI: 1.13-3.36) increased risk of DGF
 - Garonzik-Wang/Segev, JAMA Surgery, 2012
 - 2.2-fold (95% CI: 1.00-4.80) increased risk of mortality
 - McAdams-DeMarco/Segev, AJT, 2014
 - 1.6-fold (95% CI: 1.15-2.43) increased risk of >2 week
 KT length of stay
 - McAdams-DeMarco/Segev. In Preperation

Frail KT recipients are more likely to require an MMF dose reduction


1.29-times (95%CI:1.01-1.66; P=0.04) increased risk.


McAdams-DeMarco, et al. 2014.

Frail KT recipients report worse HRQOL

2.97-fold (95% CI: 1.48-5.98) higher odds of

Frailty improves after KT

McAdams-DeMarco, JAGS, in press.

Outline

- What is frailty?
- Studies of frailty and ESRD
- Studies of frailty in kidney transplant (KT) recipients
- How can frailty improve clinical care for transplant recipients?

Frailty in the clinical care of transplant recipients

- In patients with ESRD frailty:
 - measures the ability of a patient to respond to a stressor
 - captures a <u>unique domain of risk</u>
- Frailty can be used for clinical decision-making
 - Better patient selection
 - Interventions prior to KT

WHERE DO YOU SEE FRAILTY FITTING IN PATIENT SELECTION?

Frailty and recipient selection

- Incorporating frailty into the transplant evaluation would improve recipient selection
- May help transplant surgeons:
 - Accept marginal candidates who are not frail
 - Decide against transplanting frail candidates
 - Identify older adults who would do well with transplant despite their age

HOW CAN FRAILTY BE USED TO IMPROVE PATIENT OUTCOMES?

Pre-habilitation of frail candidates

- Pre-habilitation can improve a patients surgical outcomes
- Transplantation is beneficial in many patients
 - We're trying to work out which frail patients will benefit vs not benefit from KT
- KT is one of the only situations in this entire field of frailty research where an intervention has been shown to reverse this physiologic reserve
- We are launching a study on pre-habilitation in patients undergoing hemodialysis now

Epidemiology Research Group in Organ Transplantation

Dorry Segev, MD PhD, Director

Medicine/Surgery

Morgan Grams, MD PhD
Nephrology Faculty

Christine Durand, MD

Infectious Diseases Faculty
Bonnie Lonze, MD PhD

Surgery Faculty
Rizwan Ahmed, MD

Surgery Resident

Rebecca Craig-Schapiro, MD

Surgery Resident
Sandra DiBrito, MD
Surgery Resident

Jackie Garonzik-Wang, MD PhD Surgery Resident

Elizabeth King, MD Surgery Resident

Babak Orandi, MD PhD MSc

Surgery Resident **Kyle Van Arendonk, MD PhD**

Surgery Resident
Israel Olorundare, MBBS MPH

PostDoc

Jennifer Alejo

Medical Student
Natasha Gupta

Medical Student

Jessica Moore Medical Student

Ashton Shaffer Medical Student

Megan Salter, PhD Medical Student

Lauren Kucirka, ScM MD/PhD Student

Maria Lourdes Perez, DVM Laboratory Science

Core Research Group

Epidemiology

Allan Massie, PhD Epidemiology

Mara McAdams-DeMarco, PhD

Epidemiology

Tanjala Purnell, PhD

Epidemiology

Abi Muzaale, MD MHS Epidemiology Postdoc

Xun Luo, MD MPH

Epidemiology Staff
Sunjae Bae, KMD MPH

Epidemiology Staff

Anna Poon, MHS

Epidemiology Staff
Hao Ying, ScM

Epidemiology Staff

Economics

Lauren Nicholas, PhD

Graduate Students

Mohammed Alfawzan

Epidemiology MPH Student Mary Grace Bowring Epidemiology MPH Student Ayla Cash Epidemiology MPH Student

Lara Fahmy Epidemiology MSc Student

Computational Science

Sommer Gentry, PhD

Computer Science Eric Chow, MHS

Decision Process Models

Corey Wickliffe
Geographic Information Systems

Research Assistants

Full-Time:

Saad Anjum Ryan Brown Richmond Castillo

Cassandra Delp Kyle Fisk Erika Jones

Jonathan Konel Komal Kumar

Claudia Landazabal Kathryn Marks James Tonascia Nicole Zonnenberg

Part-Time:

Nathalia Aldana Maurice Dunn Nathaniel Green Billy Kim

Arnaldo Mercado-Perez

Maisa Nimer Ana Quintanal Katrina Rios Sumukh Shetty Joanna Wexler

Affiliated

Daniel Scharfstein, ScD
Biostatistics

Ravi Vardhan, PhD

Biostatistics

Lucy Meoni, ScM Biostatistics

Josef Coresh, MD PhD
Epidemiology

Andrew Cameron, MD PhD

Surgery

Niraj Desai MD

Surgery

Robert Montgomery, MD DPhil Surgery

Nabil Dagher, MD

Surgery Elliott Haut, MD PhD

Surgery Kim Steele, MD PhD

Surgery

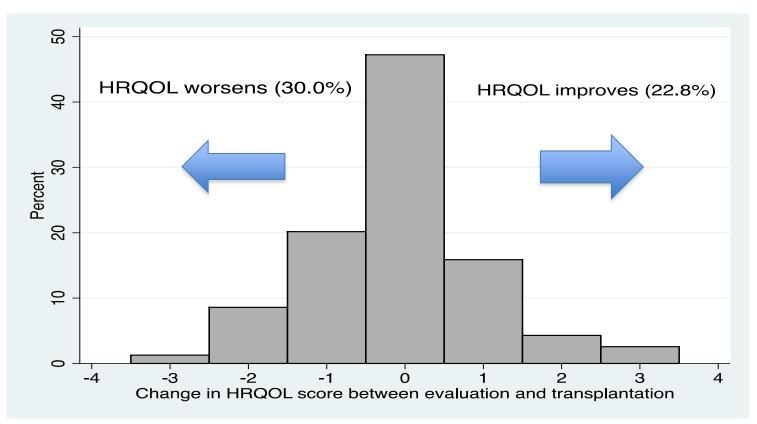
Diane Schwartz, MD

Surgery

Aliaksei Pustavoitau, MD

Anesthesiology

http://www.transplantepi.org/


Shrinking	Determined by asking patients their current weight and their weight one year ago.
	Alternatively, current weight and their weight one year ago could be obtained from a
	patients' medical records. Patients who report unintentionally losing 10 pounds or
	more in the last year are considered frail by the shrinking component.
	Determined by asking 2 questions from the CES-D (26): "How often in the last week did
Exhaustion	you feel this way?"
	(a) I felt that everything I did was an effort
	(b) I could not get going
	Patients who reported (a) or (b) for 3 or more days in the past week are considered frail
	by the exhaustion component.
	The short version of the Minnesota Leisure Time Activity (27) questionnaire is used to
	assess frequency of physical activities. Physical activity is converted to Kcals/week
Physical	expended using a standardized algorithm (number of days physical activity took place in
Activity	the past 2 weeks x duration of activity in minutes x kcals burned per minute). Men who
	expended <383 Kcals/week and women who expended <270 Kcals/ week are
	considered frail for the low physical activity component.
	Patients are timed while walking 15 ft. Stratified by gender and height, men who are
	≤173 cm and required ≥7 seconds, or were >173 cm and required ≥ 6 seconds are
Walking	considered frail. Women who are ≤ 159 cm and required ≥ 7 seconds, or who are >159
speed	cm and required ≥ 6 seconds are considered frail for the decreased walking speed
	component. Patients who are unable to complete this assessment due to physical

limitations are considered frail for the decreased walking speed component.


Grip strength is measured using a Jamar hand-held dynamometer. The cu	atoris are
gender and BMI specific:	
Men Cutoff for Grip Strength (kg) criterion for frailty	
BMI ≤ 24 ≤ 29	
BM 24.1 - 28 ≤ 30	
BMI > 28 ≤ 32	
Grip Women	
Strength PNAL 22	
BMI ≤ 23 ≤ 17	
BMI 23.1 - 26 ≤ 17.3	
BMI 26.1-29 ≤ 18	
BMI > 29 ≤ 21	
Patients below these cutoffs for grip strength are considered frail for the strength component. Patients who are unable to complete this assessment	

physical limitations are considered frail for the low grip strength component.

Change in HRQOL

Frailty Components, Normalized

Fried frailty phenotype represents inflammatory state

- In older adults, frailty is an inflammatory state of increased vulnerability to stressors.
- Immune system dysregulation may play a leading role, resulting in heightened inflammation and alteration in innate and adaptive immune systems (Yao, 2011).
- Frailty is associated with dysregulation of multiple physiologic systems, including a generalized inflammatory state (Walston, 1999).